Bioethanol: A Green Energy Substitute for Fossil Fuels (Green Energy and Technology)

دانلود کتاب Bioethanol: A Green Energy Substitute for Fossil Fuels (Green Energy and Technology)

39000 تومان موجود

کتاب بیواتانول: یک جایگزین انرژی سبز برای سوخت های فسیلی (انرژی سبز و فناوری) نسخه زبان اصلی

دانلود کتاب بیواتانول: یک جایگزین انرژی سبز برای سوخت های فسیلی (انرژی سبز و فناوری) بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 4


توضیحاتی در مورد کتاب Bioethanol: A Green Energy Substitute for Fossil Fuels (Green Energy and Technology)

نام کتاب : Bioethanol: A Green Energy Substitute for Fossil Fuels (Green Energy and Technology)
ویرایش : 1st ed. 2023
عنوان ترجمه شده به فارسی : بیواتانول: یک جایگزین انرژی سبز برای سوخت های فسیلی (انرژی سبز و فناوری)
سری :
نویسندگان : ,
ناشر : Springer
سال نشر : 2023
تعداد صفحات : 349
ISBN (شابک) : 3031365410 , 9783031365416
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 8 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Preface
Acknowledgements
Contents
Editors and Contributors
Introduction: Benefits, Prospects, and Challenges of Bioethanol Production
1 Introduction
2 Benefits of Bioethanol Production
2.1 Substantial Contribution to Gross Domestic Product (GDP)
2.2 Reduction in GHG Emissions
2.3 Bioethanol as a Substitute for Fossil Fuels
2.4 Enhanced Energy Security
3 Prospects of Bioethanol
3.1 Financial Support and Subsidies
3.2 Introduction of Preferential Policies
3.3 Job Creation Opportunities
3.4 Availability of Bioethanol Market
3.5 Discovery of Novel Feedstocks
3.6 Improvement in Processing Technology
3.7 Integration of Bioethanol Processing Technology
4 Challenges Associated with Bioethanol
4.1 High Capital and Energy Investment
4.2 Unavailability of Feedstocks
4.3 Formation of Inhibitory Compounds
4.4 Poor Performance of Fermentation Microorganisms
4.5 High Bioethanol-Water Separation Cost
4.6 Political Instability and Changes in Government Policies
4.7 Limited Land Use for Energy Crops
4.8 Lack of Technological Advancement
4.9 Demand for Bioethanol
4.10 Water Unavailability
References
Novel and Cost-Effective Feedstock for Sustainable Bioethanol Production
1 Introduction
2 Overview of Bioethanol Production Process
2.1 Modes of Fermentation
2.2 Fermentation Methods
3 Novel and Cost-Effective Feedstock Sources
3.1 First-Generation Feedstocks
3.2 Second-Generation Feedstocks
3.3 Third-Generation Feedstocks
3.4 Fourth-Generation Feedstocks
3.5 Advances in Bioethanol Production from Waste Streams
4 Mixed Feedstocks
5 Economic Feasibility of Bioethanol Production from Novel Feedstocks
6 Status Summary of Bioethanol Production from Different Feedstocks
7 Conclusion
References
Feedstock Conditioning and Pretreatment of Lignocellulose Biomass
1 Introduction
2 Role of Pretreatment
3 Types of Pretreatments
3.1 Physical Pretreatment
3.2 Irradiations Methods
3.3 Hydrothermal/liquid Hot Water (LHW) Pretreatment
3.4 Pyrolysis
3.5 Chemical Methods
3.6 Physicochemical Pretreatment
3.7 Biological Pretreatment
4 Hydrolysate Conditioning
5 Pretreatment Technology Challenges
6 Conclusion
References
Current Status of Substrate Hydrolysis to Fermentable Sugars
1 Introduction
2 Feedstocks Classification
2.1 First-Generation Feedstock
2.2 Second-Generation Feedstocks
2.3 Third-Generation Feedstocks
2.4 Fourth-Generation Feedstocks
3 Pretreatment Defined
3.1 Physical Pretreatment
3.2 Chemical Pretreatment
3.3 Biological Pretreatment
3.4 Physicochemical Pretreatment
4 Substrate Hydrolysis
4.1 Types of Hydrolysis
5 Factors Affecting Substrate Hydrolysis to Fermentable Sugars
6 Conclusion and Future Perspectives
References
Bioethanol Production Using Novel Starch Sources
1 Introduction
2 Starch Structure and Properties
3 Bioethanol Feedstocks
4 Hydrolysis of Feedstocks for Bioethanol Production
5 Bioethanol Production from Starch-Based Feedstocks
5.1 Separate Hydrolysis and Fermentation (SHF)
5.2 Simultaneous Saccharification and Fermentation
5.3 One-Pot Simultaneous Saccharification and Fermentation
5.4 Simultaneous Saccharification and Co-fermentation
6 Novel Starch Sources for Bioethanol Production
6.1 Starch-Based Crops
6.2 Starch-Based Agricultural Wastes
6.3 Starch-Based Aquatic Plants
7 Bioethanol Production from Lignocelluloses
8 Strategies for Improvement of Bioethanol Production from Novel Starch Sources
8.1 Engineered Simultaneous Saccharification and Fermentation (ESSF)
8.2 Yeast-Modifying Activities and Immobilization
8.3 Mixed Starch-Based Substrate Concept
9 Conclusion
References
Bioethanol Production from Lignocellulosic Wastes: Potentials and Challenges
1 Introduction
2 Lignocellulosic Feedstocks for Secondary Bioethanol Production
2.1 Forest Biomass
2.2 Agricultural Crop Residues
2.3 Lignocellulosic Industrial Waste
2.4 Other Sectors in Need of Lignocellulosic Biomass
3 Lignocellulosic Bioethanol Production Process
3.1 Pretreatment and Hydrolysis
3.2 Detoxification
3.3 Enzymatic Hydrolysis
3.4 Fermentation
3.5 Bioethanol Purification
4 Pilot Plants and Biorefineries for Bioethanol Production from Lignocellulosic Biomass
5 Food-Water-Energy Nexus
6 Potential of 2G Bioethanol for the Transportation Sector and Future Projections
7 Conclusion
References
Bioethanol Production from Microalgae: Potentials and Challenges
1 Introduction
2 Microalgae as the Feedstock for Third-Generation Bioethanol
3 Cultivation of Microalgae
3.1 Open Ponds
3.2 Photobioreactors
3.3 Use of Wastewater and Seawater in Microalgae Cultivation
4 Microalgal Biomass Harvesting
4.1 Thickening of Microalgal Culture
4.2 Dewatering of the Microalgal Cells
5 Pretreatment of Microalgae
5.1 Characteristics of Microalgal Cell Walls
5.2 Acid-Thermal Pretreatment
5.3 Alkali Pretreatment
5.4 Enzymatic Pretreatment/Hydrolysis
5.5 Sonication
5.6 Ozone Pretreatment
5.7 Solvent Pretreatment
5.8 Other Potential Methods of Pretreatment
6 Fermentation Technology in Bioethanol Production from Microalgae
7 Potentials and Challenges in Ethanol Production from Microalgae
8 Conclusion
References
Bioethanol Production via Fermentation: Microbes, Modeling and Optimization
1 Introduction
2 Processes Involved in Bioethanol Production
2.1 Pretreatment Step
2.2 Hydrolysis Step
2.3 Fermentation Step
2.4 Distillation Step
3 Common Microbes Used for Fermentation
3.1 Saccharomyces Cerevisiae
3.2 Kluyveromyces Marxianus
3.3 Zymomonas Mobilis
3.4 Escherichia Coli
4 Various Fermentation Techniques
4.1 Mode of Fermentation
4.2 Fermentation Classification Methods
4.3 Integrated Technologies
5 Bioethanol Production System Modeling and Optimization
5.1 Factorial Design
5.2 Response Surface Methodology (RSM)
5.3 Machine Learning Approach to Modeling Bioethanol Production
5.4 Process Optimization of Bioethanol Production Process Using Global Approaches
5.5 Ranking of ANFIS, ANN, and RSM for Bioethanol Production
6 Conclusion and Future Investigations
References
Bioethanol Recovery and Dehydration Techniques
1 Introduction
2 Bioethanol Recovery (Pre-concentration): Distillation Process
3 Bioethanol Dehydration (Purification) Technologies
3.1 Azeotropic Distillation
3.2 Extractive Distillation
3.3 Membrane Processes
3.4 Adsorption Processes
3.5 Supercritical Fluid Extraction
3.6 Hybrid/integrated Dehydration
4 Economic Implications of Bioethanol Recovery and Dehydration Techniques
5 Current Challenges and Future Directions
6 Conclusion
References
Ethanol Utilization in Spark-Ignition Engines and Emission Characteristics
1 Introduction
2 Globally Used Ethanol Fuels for SI Engines
3 Effect of Ethanol Fraction on Key Fuel Parameters
3.1 Engine Fuel Requirements—Octane Number
3.2 Blending Rules
3.3 Heat of Vaporization and Charge Cooling
4 Effect of Ethanol Fraction on Engine Performance and Economy Parameters
4.1 Advantages of Ethanol Heat of Vaporisation
4.2 Advantages of Ethanol Octane Number
4.3 Disadvantages of Low Heating Value
4.4 Disadvantages of Ethanol During Cold Start
4.5 Effect of Ethanol Content on Efficiency and Fuel Economy Data
4.6 Engine Design for High Ethanol Fraction Fuel
5 Effect of Ethanol Fraction on Engine Out Emissions
5.1 C/H/O Ratios
5.2 Flame Temperatures
5.3 Effect of Ethanol Fraction on NOx
5.4 Effect of Ethanol Fraction on PM
5.5 Effect of Ethanol Fraction on CO
5.6 Effect of Ethanol Fraction on UHC
5.7 Effect of Ethanol Fraction on Cold Start Emissions
6 Conclusion
References
Overview of Commercial Bioethanol Production Plants
1 Introduction
2 Bioethanol Production: an Overview
2.1 First-Generation Bioethanol Production
2.2 Second-Generation Bioethanol Production
2.3 Third-Generation Bioethanol
3 Processing technologies for commercial scale bioethanol production
4 Main Factors that Attract and Limit Commercial Bioethanol Production
4.1 Composition
4.2 Pretreatment
5 Worldwide Commercial Companies for Bioethanol
6 Economic Feasibility and Sustainability of Commercial Bioethanol: Challenges and Future Perspectives
7 Current Status of Global Commercial-Scale Bioethanol Production
8 Conclusions
References
Techno-Economic and Life Cycle Analysis of Bioethanol Production
1 Introduction
2 Techno-Economic Analysis
2.1 Bioethanol Market Price and Regulations
2.2 First Generation
2.3 Second Generation
2.4 Third Generation
3 Life Cycle Assessment
3.1 Overview
3.2 Goal and Scope Definition
3.3 Inventory Analysis
3.4 Life Cycle Impact Assessment
3.5 Interpretation
4 Conclusions
References
Concluding Remarks and Future Directions




پست ها تصادفی