توضیحاتی در مورد کتاب Geometric Linear Algebra Vol.1
نام کتاب : Geometric Linear Algebra Vol.1
عنوان ترجمه شده به فارسی : جبر خطی هندسی جلد 1
سری :
نویسندگان : I-Hsiung Lin
ناشر : World Scientific
سال نشر : 2005
تعداد صفحات : 881
ISBN (شابک) : 9789812560872 , 9812561323
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 4 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Preface
Contents
PART 1. The Affine and Linear Structures of R^1, R^2 and R^3
Chapter 1.
1.1 Vectorization of a Straight Line: Affine Structure
The Vectorization of a straight line
Linear dependence of line vectors
1.2 Coordinatization of a Straight Line: R^1 (or R)
The coordinatization of a straight line
The real number system R and the standard one-dimensionalvector space R^1
1.3 Changes of Coordinates: Affine and Linear Transformations (or Mappings)
Coordinate changes of two vectorized spaces on the same line
1.4 Affine Invariants
Affine invariants
Chapter 2. The Two-Dimensional Real Vector Space R^2
2.1 (Plane) Vector
2.2 Vectorization of a Plane: Affine Structure
2.3 Coordinatization of a Plane: R^2
2.4 Changes of Coordinates: Affine and Linear Transformations (or Mappings)
2.5 Straight Lines in a Plane
2.6 Affine and Barycentric Coordinates
2.7 Linear Transformations (Operators)
2.8 Affine Transformations
2.8.1 Matrix representations
2.8.2 Examples
2.8.4 Affine geometry
Menelaus Theorem
Ceva Theorem
Desargues Theorem
2.8.5 Quadratic curves
Chapter 3. The Three-Dimensional Real Vector Space R^3
3.1 Vectorization of a Space: Affine Structure
3.2 Coordinatization of a Space: R^3
3.3 Changes of Coordinates: Affine Transformation (or Mapping)
3.4 Lines in Space
3.5 Planes in Space
3.6 Affine and Barycentric Coordinates
3.7 Linear Transformations (Operators)
3.7.1 Linear operators in the Cartesian coordinate system
3.7.2 Examples
3.7.3 Matrix representations of a linear operator in various bases
3.7.4 Linear transformations (operators)
3.7.5 Elementary matrices and matrix factorizations
3.7.6 Diagonal canonical form
3.7.7 Jordan canonical form
3.7.8 Rational canonical form
3.8 Affine Transformations
3.8.1 Matrix representations
3.8.2 Examples
3.8.3 Affine invariants
3.8.4 Affine geometry
Appendix A. Some Prerequisites
A.1 Sets
A.2 Functions
A.3 Fields
A.4 Groups
A.5 Polynomials
Appendix B. Fundamentals of Algebraic Linear Algebra
B.1 Vector (or Linear) Spaces
B.2 Main Techniques: Linear Combination, Dependence and Independence
B.3 Basis and Dimension
B.4 Matrices
B.5 Elementary Matrix Operations and Row-Reduced Echelon Matrices
B.6 Determinants
B.7 Linear Transformations and Their Matrix Representations
B.8 A Matrix and its Transpose
B.9 Inner Product Spaces
B.10 Eigenvalues and Eigenvectors
B.11 Diagonalizability of a Square Matrix or a Linear Operator
B.12 Canonical Forms for Matrices: Jordan Form and Rational Form
B.12.1 Jordan canonical form
B.12.2 Rational canonical form
References
1-19
20-30
31-41
Index of Notations
Index