Introduction to Harmonic Analysis

دانلود کتاب Introduction to Harmonic Analysis

59000 تومان موجود

کتاب مقدمه ای بر تجزیه و تحلیل هارمونیک نسخه زبان اصلی

دانلود کتاب مقدمه ای بر تجزیه و تحلیل هارمونیک بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 8


توضیحاتی در مورد کتاب Introduction to Harmonic Analysis

نام کتاب : Introduction to Harmonic Analysis
عنوان ترجمه شده به فارسی : مقدمه ای بر تجزیه و تحلیل هارمونیک
سری : Student Mathematical Library IAS/park City Mathematical Subseries, Volume 105
نویسندگان :
ناشر : American Mathematical Society
سال نشر : 2023
تعداد صفحات : 296

زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 4 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Introduction to Harmonic Analysis
Half-title Page
Title Page
Copyright
Contents
IAS/Park City Mathematics Institute
Preface
Chapter 1. Motivation and preliminaries
1.1. The heat equation in equilibrium
1.2. Holomorphic functions
1.3. Know thy calculus
1.4. The Dirichlet principle
Exercises
Chapter 2. Basic properties
2.1. The mean value property
2.2. The maximum principle
2.3. Poisson kernel and Poisson integrals in the ball
2.4. Isolated singularities
Exercises
Notes
Chapter 3. Fourier series
3.1. Separation of variables
3.2. Fourier series
3.3. Abel means and Poisson integrals
3.4. Absolute convergence
3.5. Fejér’s theorem
3.6. Mean-square convergence
3.7. Convergence for continuous functions
Exercises
Notes
Chapter 4. Poisson kernel in the half-space
4.1. The Poisson kernel in the half-space
4.2. Poisson integrals in the half-space
4.3. Boundary limits
Exercises
Notes
Chapter 5. Measure theory in Euclidean space
5.1. The need for an integration theory
5.2. Outer measure in Euclidean space
5.3. Measurable sets and measure
5.4. Measurable functions
Exercises
Notes
Chapter 6. Lebesgue integral and Lebesgue spaces
6.1. Integration of measurable functions
6.2. Fubini’s theorem
6.3. The Lebesgue space




پست ها تصادفی