توضیحاتی در مورد کتاب Linear and Nonlinear Optical Responses of Chiral Multifold Semimetals. Doctoral Thesis accepted by Université Grenoble Alpes, Grenoble, France
نام کتاب : Linear and Nonlinear Optical Responses of Chiral Multifold Semimetals. Doctoral Thesis accepted by Université Grenoble Alpes, Grenoble, France
عنوان ترجمه شده به فارسی : پاسخ های نوری خطی و غیرخطی نیمه فلزات چند برابر کایرال. پایان نامه دکتری پذیرفته شده توسط دانشگاه گرنوبل آلپ، گرنوبل، فرانسه
سری : Springer Theses. Recognizing Outstanding Ph.D. Research
نویسندگان : Miguel Ángel Sánchez Martínez
ناشر : Springer
سال نشر : 2023
تعداد صفحات : 130
ISBN (شابک) : 9783031257704 , 9783031257711
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 3 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Supervisor’s Foreword
Abstract
Acknowledgments
Contents
Abbreviations
1 Introduction
1.1 Experimental Signatures of Topological Metals
1.1.1 ARPES and the Discovery of Weyl Semimetals
1.1.2 The Chiral Anomaly and Negative Magnetoresistance of Weyl Semimetals
1.1.3 Optical Responses as Probes for Topological Phases
1.2 Beyond Weyl Crossings: Multifold Fermions
1.3 Structure of the Thesis
References
2 Chiral Multifold Fermions
2.1 Weyl Fermions
2.2 The Classification of Chiral Multifold Fermions
2.2.1 Double-Weyl Fermion
2.2.2 Threefold Fermion
2.2.3 Sixfold Fermion
2.2.4 Fourfold Fermion
2.3 Material-Oriented Tight-Binding Models of Chiral Multifold Fermions
2.3.1 Space Group 199
2.3.2 Space Group 198 and Candidate Materials
2.4 Conclusions
References
3 Linear Optical Conductivity of Chiral Multifold Fermions: kcdotp and Tight-Binding Models
3.1 Linear Optical Response in the Length Gauge
3.2 Optical Fingerprints in the Multifold kcdotp Models
3.2.1 Optical Conductivity of Fully Rotationally Symmetric Models
3.2.2 Optical Conductivity of Non-symmetric Low-Energy Models
3.3 Imaginary Part of the Optical Conductivity and Sum Rules
3.4 Optical Conductivity of Realistic Tight-Binding Models
3.4.1 Space Group 199
3.4.2 Space Group 198: RhSi
3.5 Conclusions
References
4 Linear Optical Conductivity of CoSi and RhSi: Experimental Fingerprints of Chiral Multifold Fermions in Real Materials
4.1 Introduction
4.2 CoSi
4.2.1 Experimental Features of the Optical Conductivity
4.2.2 Low-Energy Regime: kcdotp and Tight-Binding Models
4.2.3 The Role of Spin-Orbit Coupling and the Spin-3/2 Multifold Fermion
4.2.4 Summary
4.3 RhSi
4.3.1 Experimental Features of the Optical Conductivity
4.3.2 Low-Energy Regime: kcdotp and Tight-Binding Models
4.3.3 Summary
4.4 Conclusions
References
5 Nonlinear Optical Responses: Second-Harmonic Generation in RhSi
5.1 The Zoo of Nonlinear Responses
5.2 The Circular Photogalvanic Effect in RhSi
5.2.1 Experimental Features of the Circular Photogalvanic Effect
5.2.2 DFT Calculation of Circular Photogalvanic Effect in RhSi
5.2.3 Circular Photogalvanic Effect Calculation with a Tight-Binding Model for RhSi
5.3 Second-Harmonic Generation in RhSi
5.3.1 Second-Harmonic Generation in the Length Gauge
5.3.2 Second-Harmonic Generation of the Threefold Fermion at Γ: Low-Energy kcdotp Model
5.3.3 Experimental Features of the Second-Harmonic Generation in RhSi: Characterization with DFT Calculations
5.4 Comparing Low-Energy Second-Harmonic Generation Using First-Principles and kcdotp Calculations
5.5 Conclusions
References
6 Conclusions
References
Appendix A Optical Conductivity of a Tetrahedral Fourfold Fermion
Appendix B Temperature and Broadening of the Step Function
Appendix C Imaginary Part of the Optical Conductivity from the Kramers-Kronig Relations
Appendix D Sum Rules
Appendix E Parallelized Code for Computing Second-Harmonic Generation
Appendix F Accounting for Many-Body Effects in the Second-Harmonic Generation of RhSi: Scissors Potential in DFT Calculations
Appendix Curriculum Vitae
Appendix Scientific Production
Appendix References