توضیحاتی در مورد کتاب Matplotlib for Storytellers: Python Data Visualization
نام کتاب : Matplotlib for Storytellers: Python Data Visualization
عنوان ترجمه شده به فارسی : Matplotlib برای داستاننویسان: تجسم دادههای پایتون
سری :
نویسندگان : Alexander Clark
ناشر : Leanpub
سال نشر : 2023
تعداد صفحات : 193
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 10 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Preface
Technical Notes and Prerequisites
Why Matplotlib?
Good Visualization is like Good Writing
Resources and Inspiration
Text Organization
I Prose
The Object-oriented Interface
Figure, Axes
Mixing the Interfaces
Axes Appearance, Ticks, and Grids
Axis Aspect and Limits
Axis Lines and Spines
Ticks
Grids
Plot Elements and Coordinate Systems
Primitives and Containers
Ordering with [language = Python]zorder
Coordinate Systems and Transformations
Use Window Extents
Text and Titles
Simple Titles
Text and Placement
Text Formatting for Numbers
Legends
Annotations
Labeling and Arrows
Fancy Titles
Multi-colored Titles
Fonts
Importing Fonts with Font Manager
Dates
Plotting
Time Zone Handling
Ticks and Formatting
Date Formats
Colors
Colormaps
Red, Green, Blue, Alpha
Multiple Axes and Plots
Multiple Axes
Using [language = Python]twinx() and [language = Python]twiny()
Multiple Plots
Using [language = Python]subplots
Using [language = Python]addsubplot
Figure Annotations and Legends
GridSpec
Style Configuration
rcParams
Defining Your Own Style
Temporary Configurations
A Final Prose Example
A First Go
Reconfigured, Refactored, and Reusable
II Mathematical Interlude
Math
Circles
The Unit Circle
Non-unit Circles
Rotations and Ellipses
Right Triangles
Applications
Sloping Text
Circular Arrangements
Network Graphs
Tony Hawk\'s Vertical Loop
III Poetry
Poetry
Applications
Activity Calendar
Heatmaps
Google Trends
NHL Regular Season Records
Directed Graphs
Speedometer
IV Special Topics
Ternary Plots
Ternary
Application: Rock, Paper, Scissors
Intro Statistics
Probability Diagrams
Distributions
Multi-dimensional Scaling