Peptide Bionanomaterials: From Design to Application

دانلود کتاب Peptide Bionanomaterials: From Design to Application

37000 تومان موجود

کتاب بیونانومادهای پپتیدی: از طراحی تا کاربرد نسخه زبان اصلی

دانلود کتاب بیونانومادهای پپتیدی: از طراحی تا کاربرد بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 2


توضیحاتی در مورد کتاب Peptide Bionanomaterials: From Design to Application

نام کتاب : Peptide Bionanomaterials: From Design to Application
ویرایش : 1st ed. 2023
عنوان ترجمه شده به فارسی : بیونانومادهای پپتیدی: از طراحی تا کاربرد
سری :
نویسندگان :
ناشر : Springer
سال نشر : 2023
تعداد صفحات : 556
ISBN (شابک) : 3031293592 , 9783031293597
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 20 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Preface
Contents
Chapter 1: Design Rules for Self-Assembling Peptide Nanostructures
1.1 Nature: Source of Inspiration
1.2 Amino Acids: The Building Units
1.3 Molecular Design of Self-Assembling Peptides: The Building Blocks
1.3.1 Biosynthetic Polypeptides
1.3.1.1 Collagen-Like Polypeptides
1.3.1.2 Elastin-Like Polypeptides
1.3.1.3 Silk-Elastin-Like Polypeptides
1.3.1.4 Keratin and Keratin-Like Polypeptides
1.3.1.5 Resilin-Like Polypeptides
1.3.2 De Novo Synthetic Short Peptides
1.3.2.1 β-Sheet Forming Peptides
1.3.2.2 β-Hairpin-Forming Peptides
1.3.2.3 α-Helix/Coiled-Coil-Forming Peptides
1.3.2.4 Amphiphilic Peptides
Amphiphilic Peptide Sequences
Lipidated Peptides
1.3.2.5 Short Aromatic Peptides
1.3.2.6 Cyclic Peptides
1.4 Summary
References
Chapter 2: β-Sheet and β-Hairpin Peptide Nanomaterials
2.1 Introduction
2.2 Early Investigations of β-Sheet Peptide Assemblies as Materials
2.3 Short Amphipathic β-Sheet Peptides
2.3.1 Ionic Self-Complementary Peptides: EAK16 and RAD16
2.3.2 (FKFE)n and Related Amphipathic Peptide Sequences from the EAK/RAD Family
2.3.3 P11 Peptides and Related Sequences
2.3.4 Multidomain Peptides
2.4 β-Hairpin Self-Assembling Peptides
2.5 Surfactant-Like Peptide Assemblies
2.6 Conclusion
References
Chapter 3: α-Helix and Coiled-Coil Peptide Nanomaterials
3.1 Scope of This Chapter
3.2 De Novo Design of α-Helical Coiled Coils
3.3 α-Helical Peptide Fibers
3.4 α-Helical Peptide Nanotubes
3.5 α-Helical Peptide Cages and Protein Origami
3.6 α-Helical Peptide Networks and Arrays
3.7 Conclusions
References
Chapter 4: Ultra-Short Peptide Nanomaterials
4.1 Introduction
4.1.1 Definition of Ultra-Short Peptide
4.1.2 A Brief History of Short and Ultra-Short Peptide Nanomaterials
4.1.3 General Mechanism of Self-Aggregation
4.2 Nanotubes
4.3 Hydrogels
4.4 Adhesives
4.5 Conclusions and Future Perspectives
References
Chapter 5: Peptide Amphiphile Nanomaterials
5.1 Introduction
5.2 Classification
5.2.1 Amphiphilic Peptides
5.2.1.1 PAs with Alternate Hydrophilic-Hydrophobic Amino Acid Sequence
5.2.1.2 PAs with Hydrophilic Sequence Connected with Hydrophobic Stretch
5.2.1.3 Block co-Polypeptide Amphiphiles
5.2.2 Lipidated Peptide Amphiphiles
5.2.3 Cyclic Peptide Amphiphiles
5.2.4 Supramolecular Peptide Amphiphiles
5.3 Self-Assembly and Nanostructures
5.3.1 Interactions Accountable for PA Self-Assembly
5.3.1.1 Hydrogen Bonding
5.3.1.2 Hydrophobic Interaction
5.3.1.3 Electrostatic Interactions
5.3.1.4 π-π Stacking
5.3.1.5 Van der Waals Interactions
5.3.1.6 Other Unusual Interactions
5.3.2 Nanoassemblies of PAs
5.3.3 Thermodynamic and Kinetics of PA Self-Assemblies
5.3.4 Stimuli-Responsive Assemblies of PAs
5.3.4.1 pH Responsive
5.3.4.2 Redox Responsive
5.3.4.3 Biocatalyst Responsive
5.4 Application-Specific Design and Execution Guideline
5.5 Applications of PA Assemblies
5.5.1 Tissue Engineering
5.5.2 As Delivery Vehicles
5.5.3 Wound Healing
5.5.4 Antimicrobial PAs
5.5.5 Mineralization and Nanofabrication
5.5.6 Conductive Materials
5.5.7 Biomimics and Systems Chemistry
5.6 Concluding Remarks
References
Chapter 6: Polypeptide-Based Multicomponent Materials: From Design to Applications
6.1 Introduction
6.2 Design Strategies for Engineered Polypeptides
6.2.1 Incorporating Unnatural Amino Acids
6.2.2 Posttranslational Modifications of Polypeptides
6.2.3 Incorporation of Cross-Linking Moieties
6.3 Creating Multicomponent Materials with Polypeptides
6.4 Creating Multicomponent Materials Combining Polypeptides and Synthetic Polymers
6.4.1 Pros and Cons of Polypeptide-Based and Synthetic Polymer-Based Materials
6.4.2 Overarching Strategies for Designing Polypeptide-Synthetic Polymer Hybrids
6.4.3 Designing Inducible Systems Via Polypeptide-Synthetic Polymer Conjugation
6.4.4 Opportunities for Multicomponent Polypeptide/Protein-Synthetic Polymer Biomaterials in Bioengineering Applications
6.5 Creating Multicomponent Materials Combining Polypeptides and Nanoparticles
6.5.1 Multicomponent Materials Based on Polypeptides and Carbon Nanoparticles
6.5.2 Multicomponent Materials Based on Polypeptides and Inorganic Nanoparticles
6.6 Creating Multicomponent Materials Combining Polypeptides and Other Molecules
6.7 Conclusion and Outlook
References
Chapter 7: Chirality in Peptide Self-Assembly and Aggregation
7.1 Introduction
7.2 Pleated and Rippled β-Sheets
7.3 Helical Peptides
7.4 Cyclic Heterochiral Peptide Assemblies
7.5 Linear Heterochiral Peptide Assemblies
7.6 Inhibition of Amyloid Toxicity
7.7 Conclusion and Future Perspectives
References
Chapter 8: Characterization of Peptide-Based Nanomaterials
8.1 Introduction
8.2 Peptide Quality Control
8.3 Establishing Interactions in Peptide-Based Nanomaterials
8.3.1 Phase Diagrams and Titrations
8.3.2 Characterizing Peptide Interactions: Thermodynamics
8.3.2.1 Isothermal Titration Calorimetry
8.3.2.2 Differential Scanning Calorimetry
8.4 Spectroscopy
8.4.1 Fourier Transform Infrared Spectroscopy
8.4.2 Raman Spectroscopy
8.4.3 Circular Dichroism
8.4.4 Linear Dichroism
8.4.5 Nuclear Magnetic Resonance Spectroscopy
8.4.6 Fluorescence Spectroscopy Assays
8.5 Microscopy
8.5.1 Transmission and Scanning Electron Microscopies
8.5.2 Atomic Force Microscopy
8.5.3 Light Microscopy
8.6 Scattering
8.6.1 Small Angle Scattering
8.6.2 Small Angle Neutron Scattering (SANS)
8.6.3 X-Ray Powder Diffraction/Wide Angle X-Ray Scattering
8.6.4 Dynamic Light Scattering (DLS) and Zeta Potential
8.7 Rheology: Characterization of Viscoelasticity and Printability
8.8 Conclusions
References
Chapter 9: In Silico Prediction of Peptide Self-assembly into Nanostructures
9.1 Introduction
9.2 All-Atom MD Simulations
9.3 Coarse-Grain Simulations
9.4 Alternative Approaches
9.5 Conclusions and Perspectives
References
Chapter 10: Advanced Manufacturing of Peptide Nanomaterials
10.1 Introduction
10.2 Role of Microfluidics in Peptide Research
10.2.1 Peptide Incorporation into NP Shell
10.2.2 Peptide Encapsulation Within NP Shell
10.2.3 Other Uses of MFs in Peptide Research
10.3 Applications of Protein and Peptide Electrospun Nanofibres
10.3.1 Fundamentals of Electrospinning
10.3.2 Proteins and Peptides in Electrospinning
10.3.3 Applications of Protein and Peptides in Electrospinning
10.3.3.1 Drug Delivery
10.3.3.2 Tissue Engineering
10.3.3.3 Other Applications
10.4 Role of Additive Manufacturing in Peptide Research
10.4.1 Fused Deposition Modelling
10.4.2 Stereolithography and Digital Light Processing
10.4.3 Selective Laser Sintering (SLS)
10.4.4 Semi-solid Extrusion (EXT)
10.5 Conclusion and Future Directions
References
Chapter 11: Self-assembling Peptide Hydrogels as Extracellular Matrix-Mimicking Scaffolds for Tissue Regeneration in Chronic-D...
11.1 Introduction
11.2 The ECM: A Key Regulator of Tissues´ Biology
11.3 Functionalization of SAPHs to Direct Cell Biology
11.4 Musculoskeletal Tissue Diseases
11.4.1 Bone Diseases
11.4.2 Cartilage Diseases
11.5 Cardiovascular Diseases
11.5.1 Cardiovascular Diseases: SAPHs as Cardiac Molecules Depots for Heart Attack
11.5.2 Cardiovascular Diseases: SAPHs as Cellular Depots for Heart Attack
11.5.3 Cardiovascular Diseases: SAPHs as Cell-Load Depots for Other Cardiovascular Diseases Disorders
11.6 SAPHs for Principal Neurodegenerative Disorders
11.6.1 Neurodegenerative Disorders: SAPHs for Alzheimer´s Disease
11.6.2 Neurodegenerative Disorders: SAPHs for Parkinson´s Disease
11.6.3 NDs: SAPHs for Spinal Cord Injury
11.7 Pancreatic Diseases
11.7.1 Pancreatic Diseases: SAPHs as Vehicles for Islet Transplant
11.7.2 Pancreatic Diseases: SAPHs for Hyperglycemia and Wound Healing
11.8 Conclusion and Future Perspectives
References
Chapter 12: Peptide Nanostructured Materials as Drug Delivery Carriers
12.1 Introduction
12.1.1 Nanomaterials for Nanomedicine
12.1.2 Nanomaterials with Peptides for Medicine
12.1.3 Bioinspiration for Self-Assembling Nanomaterials
12.2 Proteins and Peptides as Building Blocks for Self-Assembled Biomaterials
12.2.1 From Natural Self-Assembling Proteins to Peptides
12.2.2 Minimalistic Peptides as Building Blocks for Supramolecular Biomaterials
12.2.3 Modern Peptide Therapeutics
12.3 Peptide Nanostructures for Drug Delivery
12.3.1 Physical Entrapment of Drugs
12.3.2 Non-covalent Drug Interactions
12.3.3 Covalent Drug Binding
12.4 Conclusions and Future Perspectives
References
Chapter 13: Peptide and Protein Emulsifiers
13.1 Introduction
13.2 Peptide Emulsifiers
13.2.1 Short Aromatic Peptide Emulsifiers
13.2.2 α-Helix Peptide Emulsifiers
13.2.3 β-Sheets Peptide Emulsifiers
13.2.4 Miscellaneous Surfactant-Like Peptides
13.3 Protein Emulsifiers
13.3.1 Milk Protein Emulsifiers
13.3.1.1 Caseins
13.3.1.2 Whey Proteins
13.3.2 Hydrophobins
13.3.3 Gelatin
13.3.4 Pea Proteins
13.4 Protein-Polysaccharide Mixed Emulsifiers
13.4.1 Protein-Polysaccharide Covalent Conjugates
13.4.2 Protein-Polysaccharide Physical Mixtures
13.5 Summary
References
Chapter 14: Antimicrobial Peptide Nanomaterials
14.1 Introduction
14.2 General Mechanisms of Antimicrobial Peptide Action
14.3 Self-Assembly
14.4 Nanotubes
14.5 Hydrogel-Forming Nanostructures
14.5.1 Surfactant-Like Peptides
14.5.2 Peptide Amphiphiles
14.5.3 Multidomain Peptides
14.5.4 β-Hairpin Peptides
14.6 Increasing In Vivo Longevity
14.6.1 d-α-Form Amino Acids
14.6.2 Other Peptidomimetics
14.6.3 Peptoids
14.7 Conclusions and Future Perspectives
References
Chapter 15: Multifunctional Peptide Biointerfaces
15.1 Introduction
15.2 Advantages of Multifunctional Peptide Biointerfaces
15.3 Origins of Modern Peptide Biointerfaces
15.3.1 The Fundamental Role of Antifouling Surfaces
15.3.2 Self-Assembled Monolayers (SAMs) and Thiol-Gold Surface Functionalization
15.3.3 Polysarcosine Peptoid Antifouling and the DOPA Universal Surface Adhesive
15.3.4 Protein Mimicry and Zwitterionic Glu-Lys (EK) Peptides
15.4 Multifunctional Peptides for Surface Functionalization
15.4.1 Direct Application of Bioactive Peptides
15.4.2 Linear SAM Designs
15.4.3 Non-linear Multifunctional Peptide Surface Designs
15.5 Conclusions
References
Chapter 16: Peptide Bionanomaterials Global Market: The Future of Emerging Industry
16.1 Introduction
16.2 Peptides as Bionanomaterials
16.3 Market Segments Based on Applications
16.3.1 Tissue Engineering and 3D Printing
16.3.2 Drug Delivery
16.3.3 Antibacterial Peptides for Wound Healing
16.3.4 Cosmetics
16.4 COVID-19 Impact on the Biomaterials Market
16.5 Market Comparisons
16.6 The Future for Peptide Bionanomaterials
References




پست ها تصادفی