توضیحاتی در مورد کتاب A Course of Stochastic Analysis
نام کتاب : A Course of Stochastic Analysis
عنوان ترجمه شده به فارسی : دوره تحلیل تصادفی
سری : CMS/CAIMS Books in Mathematics, Volume 6
نویسندگان : Alexander Melnikov
ناشر : Springer
سال نشر : 2023
تعداد صفحات : 215
ISBN (شابک) : 9783031253256 , 9783031253263
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 3 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Preface
Contents
Acronyms and Notation
1 Probabilistic Foundations
1.1 Classical theory and the Kolmogorov axiomatics
1.2 Probabilistic distributions and the Kolmogorov consistency theorem
2 Random variables and their quantitative characteristics
2.1 Distributions of random variables
2.2 Expectations of random variables
3 Expectations and convergence of sequences of random variables
3.1 Limit behavior of sequences of random variables in terms of their expected values
3.2 Probabilistic inequalities and interconnections …
4 Weak convergence of sequences of random variables
4.1 Weak convergence and its description in terms of distributions
4.2 Weak convergence and Central Limit Theorem
5 Absolute continuity of probability measures and conditional expectations
5.1 Absolute continuity of measures and the Radon-Nikodym theorem
5.2 Conditional expectations and their properties
6 Discrete time stochastic analysis: basic results
6.1 Basic notions: stochastic basis, predictability and martingales
6.2 Martingales on finite time interval
6.3 Martingales on infinite time interval
7 Discrete time stochastic analysis: further results and applications
7.1 Limiting behavior of martingales with statistical applications
7.2 Martingales and absolute continuity of measures. Discrete time Girsanov theorem and its financial application
7.3 Asymptotic martingales and other extensions of martingales
8 Elements of classical theory of stochastic processes
8.1 Stochastic processes: definitions, properties and classical examples
8.2 Stochastic integrals with respect to a Wiener process
8.3 The Ito processes: Formula of changing of variables, theorem of Girsanov, representation of martingales
9 Stochastic differential equations, diffusion processes and their applications
9.1 Stochastic differential equations
9.2 Diffusion processes and their connection with SDEs and PDEs
9.3 Applications to Mathematical Finance and Statistics of Random Processes
9.4 Controlled diffusion processes and applications to option pricing
10 General theory of stochastic processes under ``usual conditions\'\'
10.1 Basic elements of martingale theory
10.2 Extension of martingale theory by localization of stochastic processes
10.3 On stochastic calculus for semimartingales
10.4 The Doob-Meyer decomposition: proof and related remarks
11 General theory of stochastic processes in applications
11.1 Stochastic mathematical finance
11.2 Stochastic Regression Analysis
12 Supplementary problems
References
Index