توضیحاتی در مورد کتاب Advanced Composite Materials and Structures: Modeling and Analysis
نام کتاب : Advanced Composite Materials and Structures: Modeling and Analysis
ویرایش : 1 ed.
عنوان ترجمه شده به فارسی : مواد و سازه های مرکب پیشرفته: مدل سازی و تجزیه و تحلیل
سری :
نویسندگان : Mohamed Thariq Hameed Sultan (editor), Vishesh Ranjan Kar (editor), Subrata Kumar Panda (editor), Kandaswamy Jayakrishna (editor)
ناشر : CRC Press
سال نشر : 2022
تعداد صفحات : 296
[309]
ISBN (شابک) : 036774631X , 9780367746315
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 21 Mb
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
این کتاب شکاف بین مفاهیم نظری و پیادهسازیهای آنها را، بهویژه برای سازهها/قطعات با کارایی بالا مرتبط با مواد کامپوزیتی پیشرفته، پر میکند. این کار بر پیشبینی پاسخهای ساختاری مختلف مانند تغییر شکلها، فرکانسهای طبیعی و غیره کامپوزیتهای پیشرفته تحت محیطهای پیچیده و/یا شرایط بارگذاری متمرکز است. علاوه بر این، مدلسازی مواد ریزمکانیکی مواد کامپوزیتی پیشرفته مختلف را مورد بحث قرار میدهد که شامل ساختارهای مختلف از ابتدایی تا پیشرفته، مانند تیرها، پانلهای مسطح و منحنی، پوستهها، اریب، موجدار و مواد دیگر و همچنین تکنیکهای مختلف راهحل میشود. از طریق رویکردهای تحلیلی، نیمه تحلیلی، و عددی.
این کتاب:
- میکرون را پوشش میدهد. -مدلسازی مواد مکانیکی مواد کامپوزیتی پیشرفته
- مدلهای سازنده مواد کامپوزیتی مختلف و مدلهای سینماتیکی با پیکربندیهای ساختاری مختلف را توضیح میدهد.
- تکنیک های تحلیلی، نیمه تحلیلی و عددی مربوطه را مورد بحث قرار می دهد
- بر پاسخ های ساختاری تمرکز می کند. مربوط به تغییر شکلها، فرکانسهای طبیعی و بارهای بحرانی در محیطهای پیچیده
- نمایشهای واقعی مفاهیم نظری را بهعنوان مثالهای واقعی با استفاده از اسکریپتهای Ansys APDL ارائه میکند. /span>
این کتاب برای محققان، متخصصان و دانشجویان فارغ التحصیل در رشته های مهندسی مکانیک، علم مواد، مهندسی مواد، مهندسی سازه، مهندسی هوافضا و مواد مرکب.
فهرست مطالب :
Cover
Half Title
Title Page
Copyright Page
Table of Contents
Preface
Editors
Contributors
Chapter 1: Multi-Directional Graded Composites: An Introduction
1.1 Introduction
1.2 Gradation Schemes in FGMs
1.2.1 Power Law
1.2.2 Exponential Law
1.2.3 Sigmoid Law
1.3 Homogenization Schemes in FGMs
1.3.1 Voigt’s Scheme
1.3.2 Reuss Scheme
1.3.3 Mori-Tanaka Scheme
1.3.4 Self-Consistent Method (SCM)
1.3.5 Tamura Scheme
1.3.6 Gasik-Ueda Model
1.3.7 Coherent Potential Approximation (CPA)
1.3.8 Kerner Model
1.3.9 Hirano Model
1.4 Comparison of Micromechanical Modeling Schemes
1.5 Summary
References
Chapter 2: Free Vibration Characteristics of Bi-Directional Functionally Graded Composite Panels
2.1 Introduction
2.2 Micromechanical Material Modeling of B-FGC Structure
2.2.1 Voigt Model
2.2.2 Mori–Tanaka Scheme
2.3 Finite Element Formulations
2.3.1 Higher-Order Kinematic Model
2.3.2 Constitutive Relations
2.3.3 Energy Equations
2.3.4 Boundary Conditions
2.4 Convergence and Validation Study
2.5 Results and Discussion
2.6 Conclusions
References
Chapter 3: Analytical Solution for the Steady-State Heat Transfer Analysis of Porous Nonhomogeneous Material Structures
3.1 Introduction
3.1.1 Differential Transform Method
3.2 Micromechanical Property of Even and Uneven Porous FGM
3.3 Steady-State Heat Transfer Behavior of FGM Plate
3.3.1 Physical Derivation of 1 D Heat Equation for FGM Plate
3.3.1.1 Thermal Energy Stored within a Body with Nonhomogeneous Material Properties
3.3.1.2 Fourier Law of Heat Transfer
3.3.1.3 Principle of Energy Conservation
3.3.2 Boundary Conditions
3.3.2.1 Dirichlet Boundary Condition
3.3.2.2 Neuman Boundary Condition
3.3.2.3 Mixed Boundary Condition
3.3.3 Nondimensionalization of Parameters
3.4 Solution with Differential Transform Method
3.4.1 Perfect Power-Law Graded X FGM
3.4.2 Even Porous Power-Law Graded X FGM
3.5 Results and Discussion
3.5.1 Validation Study
3.5.2 Numerical Illustration
3.6 Conclusions
References
Chapter 4: Effect of Corrugation on the Deformation Behavior of Spatially Graded Composite Panels
4.1 Introduction
4.2 Mathematical Formulation
4.2.1 Effective Material Properties
4.2.2 Displacement Field
4.2.3 Strain Displacement Relations
4.2.4 Constitutive Relation
4.2.5 Strain Energy
4.2.6 Work Done
4.2.7 Finite Element Formulation
4.2.8 Governing Equations
4.3 Results and Discussion
4.3.1 Convergence and Validation
4.3.2 Numerical Experimentation
4.4 Conclusion
Acknowledgment
References
Chapter 5: Graphene-Magnesium Core-Shell Nanocomposites: Physical, Mechanical, Thermal, and Electrical Properties
5.1 Introduction
5.2 Mathematical Modeling of the Properties
5.2.1 Physical Property
5.2.2 Mechanical Property
5.2.3 Thermal Property
5.2.4 Electrical Property
5.2.5 With Varying Both Core and Shell Diameter
5.2.6 With Varying Core Diameter and Fixed Shell Diameter
5.3 Results and Discussion
5.3.1 Estimation of Physical and Mechanical Properties
5.3.2 Estimation of Thermal Properties
5.3.3 Estimation of Electrical Properties
5.4 Conclusion
Acknowledgments
References
Chapter 6: Free Vibration of Carbon Nanotube–Reinforced Composite Beams under the Various Boundary Conditions
6.1 Introduction
6.2 Theoretical Formulation
6.3 Basic Equations
6.3.1 Fundamental Assumptions
6.3.2 Kinematics
6.3.3 Equations of Motion
6.4 Analytical Solution
6.5 Numerical Examples and Discussion
6.6 Conclusions
References
Chapter 7: Transient Characteristics of Carbon Nanotube–Reinforced Composite Plates under Blast Load
7.1 Introduction
7.1.1 Classifying Carbon Nanotubes
7.1.2 Carbon Nanotube Structure
7.1.3 Applications of Carbon Nanotubes
7.2 Micromechanical Property of FG CNT
7.3 Finite Element Formulation
7.3.1 Strain Displacement Relationship
7.3.2 Constitutive Relation
7.3.3 Description of Structural and Other Second-Order Systems
7.3.4 Time Integration Scheme for Linear Systems
7.3.5 Dynamic Loading
7.3.5.1 Exponential Blast Load
7.3.5.2 Sine Load
7.3.5.3 Triangular Load
7.3.5.4 Step Load
7.4 Results and Discussion
7.4.1 Support Conditions
7.4.2 Convergence Test
7.4.3 Validation Test
7.4.4 Numerical Illustration
7.4.4.1 Effect of Different Types of Loading
7.4.4.2 Effect of Boundary Condition
7.4.4.3 Effect of Geometrical Parameter
7.5 Concluding Remarks
References
Chapter 8: Micromechanics-Based Finite Element Analysis of HAp- Ti Biocomposite Sinusoid Structure Using Homogenization Schemes
8.1 Introduction
8.2 Mathematical Formulation
8.2.1 Effective Material Properties
8.2.1.1 Voigt’s Rule-of-Mixture
8.2.1.2 Mori–Tanaka Scheme
8.2.2 Kinematic Field
8.2.3 Constitutive and Energy Equations
8.2.4 Finite Element Approximations
8.3 Numerical Results and Discussion
8.3.1 Mesh Refinement and Verification Study
8.3.2 Numerical Experimentations
8.4 Conclusions
Acknowledgment
References
Chapter 9: Stability Behavior of Biocomposite Structures Using 2D-Finite Element Approximation
9.1 Introduction
9.2 Micromechanical Material Modeling
9.2.1 Evaluation of Volume Fractions
9.2.2 Effective Material Properties
9.3 Finite Element Formulations
9.3.1 Kinematic Model
9.3.2 Constitutive Equations
9.3.3 Strain Energy Due to In-Plane Loading
9.3.4 Governing Equations
9.4 Stability Behavior of Biocomposite Structures
9.4.1 Convergence and Comparison Tests
9.4.2 Numerical Examples
9.4.2.1 Effect of Volume Fraction Index on Buckling Strength of FG Plate
9.4.2.2 Effect of Thickness Ratio on Buckling Strength of FG Plate
9.4.2.3 Effect of Aspect Ratio on Buckling Strength of FG Plate
9.5 Conclusions
References
Chapter 10: Dynamic Analysis of Sandwich Composite Plate Structures with Honeycomb Auxetic Core
10.1 Introduction
10.2 The Properties of Honeycomb Structures and Materials
10.2.1 The Effective Properties of Honeycomb Cells
10.3 Derivation of the Governing Equations of a Sandwich Plate
10.3.1 Orthotropic Material Properties
10.3.2 Kinematic Displacement and Strains for Laminate
10.3.3 Stiffness Matrix Relating Resultants for a Composite Laminate
10.3.4 Stiffness Matrices for a Sandwich Plate
10.3.5 Simply Supported Sandwich Plate
10.4 Results and Discussion
10.4.1 Study of Convergence and Validation of Natural Frequencies
10.4.2 Influence of Face Sheet Thickness on Natural Frequencies
10.4.3 Influence of Core Thickness on Natural Frequencies
10.4.4 Influence of Cell Thickness on Natural Frequencies
10.5 Conclusions
References
Chapter 11: Hygrothermoelastic Responses of Sinusoidally Corrugated Fiber-Reinforced Laminated Composite Structures
11.1 Introduction
11.2 Mathematical Formulations
11.2.1 Strain–Displacement Relations
11.3 Governing Equation and Solution Scheme
11.4 Results and Discussions
11.4.1 Convergence and Validation
11.4.2 Numerical Experimentations
11.4.2.1 Corrugated Laminated Composite Panel Subjected to Mechanical Load
11.4.2.2 Corrugated Laminated Composite Panel Subjected to Thermal Load
11.4.2.3 Corrugated Laminated Composite Panel Subjected to Hygral Load
11.4.2.4 Corrugated Laminated Composite Panel Subjected to Combined Load
11.5 Conclusions
Acknowledgment
References
Chapter 12: Flexural Behavior of Shear Deformable FGM Composites with Corrugation: Higher-Order Finite Element Approximation
12.1 Introduction
12.2 Mathematical Formulation
12.2.1 Effective Material Properties
12.2.2 Displacement Field
12.2.3 Strain–Displacement Relations
12.2.4 Constitutive Relation
12.2.5 Strain Energy
12.2.6 Work Done
12.3 Finite Element Formulation
12.4 Results and Discussion
12.4.1 Convergence Behavior of Corrugated FG Panel
12.4.2 Validation with FG Cylindrical Shell
12.4.3 Numerical Experimentations
12.5 Conclusion
Acknowledgment
References
Chapter 13: Multiscale Analysis of Laminates Printed by 3D Printing Fused Deposition Modeling Method
13.1 Introduction
13.2 Methodology
13.2.1 Mathematical Homogenization of the RVE
13.2.2 Design of the RVE
13.2.3 Computational Analysis of the RVE
13.3 Results and Discussions
13.4 Conclusion
Acknowledgment
References
Chapter 14: Flexural Behavior of Carbon Nanotube-Reinforced Composites with Multiple Cutouts
14.1 Introduction
14.2 Types of Composite
14.2.1 Type of CNT According to Number of Tubes
14.2.2 Type of CNT According to Distribution
14.3 Application of FGCNT-Reinforced Composites
14.4 Research in FGCNT-Reinforced Composite
14.5 Effective Material Properties
14.6 Numerical Modeling of Perforated Plate
14.7 Results and Discussion
14.8 Conclusions
Acknowledgment
References
Chapter 15: Damage Studies in Curved Hybrid Laminates under Pullout Loading
15.1 Introduction
15.2 Computational Damage Model
15.2.1 Damage Initiation Law
15.2.2 Damage Evolution Law
15.2.3 Interlaminar Damage
15.3 Finite Element Model
15.3.1 Modeling Strategy
15.3.2 Plane Strain Model
15.3.3 Plane Stress Model
15.4 Failure Load Prediction
15.5 Damages Predicted in Curved Region
15.6 Conclusion
References
Chapter 16: Dynamic Behavior of Laminated Composites with Internal Delamination
16.1 Introduction
16.2 Theoretical Formulation
16.2.1 Displacement Kinematics
16.2.2 Stress-Strain Relation
16.2.3 Energy Relation
16.2.4 Finite Element Formulation
16.2.5 System Governing Equation
16.3 ABAQUS Model Development
16.4 Results and Discussion
16.4.1 Validation Study
16.4.2 New Numerical Illustrations
16.4.2.1 Delamination Size Effect on Different Modes of Flat Composite
16.4.2.2 Effect of Different Shapes of Delamination
16.4.2.3 Mode Shapes of Different Shape of Delamination
16.5 Conclusions
References
Index
توضیحاتی در مورد کتاب به زبان اصلی :
This book bridges the gap between theoretical concepts and their implementations, especially for the high-performance structures/components related to advanced composite materials. This work focuses on the prediction of various structural responses such as deformations, natural frequencies etc. of advanced composites under complex environments and/or loading conditions. In addition, it discusses micro-mechanical material modeling of various advanced composite materials that involve different structures ranging from basic to advanced, such as beams, flat and curved panels, shells, skewed, corrugated, and other materials, as well as various solution techniques via analytical, semi-analytical, and numerical approaches.
This book:
- Covers micro-mechanical material modeling of advanced composite materials
- Describes constitutive models of different composite materials and kinematic models of different structural configuration
- Discusses pertinent analytical, semi-analytical, and numerical techniques
- Focusses on structural responses relating to deformations, natural frequencies, and critical loads under complex environments
- Presents actual demonstrations of theoretical concepts as applied to real examples using Ansys APDL scripts
This book is aimed at researchers, professionals, and graduate students in mechanical engineering, material science, material engineering, structural engineering, aerospace engineering, and composite materials.