توضیحاتی در مورد کتاب Advanced Digital Image Processing and Its Applications in Big Data
نام کتاب : Advanced Digital Image Processing and Its Applications in Big Data
عنوان ترجمه شده به فارسی : پردازش تصویر دیجیتال پیشرفته و کاربردهای آن در داده های بزرگ
سری :
نویسندگان : Parag Verma, Poonam Verma, Ankur Dumka, Alaknanda Ashok
ناشر : CRC Press
سال نشر : 2020
تعداد صفحات : 237
ISBN (شابک) : 9780367367688 , 9780429351310
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 15 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover
Half Title
Title Page
Copyright Page
Table of Content
Preface
Acknowledgments
Authors
Part I: Concept and Background of Image Processing, Techniques, and Big Data
Chapter 1: Introduction to Advanced Digital Image Processing
1.1 Introduction
1.2 Categorization of Digital Images
1.2.1 Binary Image
1.2.2 Black and White Image
1.2.3 8-Bit Color Format
1.2.4 16 Color Format
1.2.5 24-Bit Format
1.3 Phases of Digital Image Processing
1.3.1 Acquisition of an Image
1.3.2 Image Enhancement
References
Chapter 2: Different Techniques Used for Image Processing
2.1 Introduction
2.1.1 Acquisition of an Image
2.1.2 Image Pre-Processing
2.1.2.1 Image Enhancement
2.1.2.2 Image Analysis
2.1.2.3 Image Compression
2.1.2.4 Edge Detection
2.1.2.5 Segmentation
2.1.2.6 Image Representation
References
Chapter 3: Role and Support of Image Processing in Big Data
3.1 Introduction
3.2 Big Data Mathematical Analysis Theories
3.2.1 Independent and Identical Distribution Theory (IID)
3.2.2 Set Theory
3.3 Characteristics of Big Data
3.4 Different Techniques of Big Data Analytics
3.4.1 Ensemble Analysis
3.4.2 Association Analysis
3.4.3 High-Dimensional Analysis
3.4.4 Deep Analysis
3.4.5 Precision Analysis
3.4.6 Divide and Conquer Analysis
3.4.7 Perspective Analysis
3.5 Steps of Big Data Processing
3.5.1 Data Collection
3.5.2 Data Storage and Management
3.5.3 Data Filtering and Extraction
3.5.4 Data Cleaning and Validation
3.5.5 Data Analytics
3.5.6 Data Visualization
3.6 Importance of Big Data in Image Processing
3.7 Hadoop
3.8 Parts of Hadoop Architecture
3.8.1 HDFS
3.8.2 Map Reduce
3.9 Working of HADOOP architecture
3.10 Image Processing with Big Data Analytics
3.11 Image preprocessing
References
Part II: Advanced Image Processing Technical Phases for Big Data Analysis
Chapter 4: Advanced Image Segmentation Techniques Used for Big Data
4.1 Introduction
4.2 Classification of Image Segmentation Techniques
4.2.1 Region-based Segmentation
4.2.1.1 Threshold Segmentation
4.2.1.2 Regional Growth Segmentation
4.2.1.3 Region Splitting and Merging Methods
4.2.2 Edge Detection Segmentation
4.2.2.1 Sobel Operator
4.2.2.2 Laplacian Operator
4.2.3 Clustering-Based Segmentation
4.2.3.1 Hard Clustering
4.2.3.2 Soft Clustering
4.2.3.3 K-Means Clustering Technique
4.2.3.4 Fuzzy C-Means Clustering Technique
4.2.4 Segmentation Based on Weakly Supervised Learning in CNN
4.2.4.1 Comparative Study of Image Segmentation Techniques
4.3 Discussion
References
Chapter 5: Advance Object Detection and Clustering Techniques Used for Big Data
5.1 Introduction
5.2 Clustering
5.3 Differences between Clustering and Classification
5.4 Distance Measure
5.4.1 Euclidean Distance
5.4.2 Minkowski Metric
5.4.3 Manhattan Metric
5.5 Clustering Algorithms
5.5.1 Partitioning-Based Clustering
5.5.1.1 K-Means Clustering
5.5.2 Hierarchical Clustering
5.5.3 Model-Based Clustering
5.5.4 Density-Based Clustering
5.5.5 Fuzzy Clustering
5.5.6 Grid-Based Clustering
5.5.7 Exclusive Clustering
5.5.8 Overlapping Clustering
Other Clustering Methods
References
Chapter 6: Advanced Image Compression Techniques Used for Big Data
6.1 Introduction
6.2 An Overview of the Compression Process
6.2.1 Concept of Image Compression
6.3 Related work of Image Compression Methods
6.4 Image Compression Techniques
6.4.1 Lossless Compression
6.4.2 Lossy Compression Techniques
6.4.3 Hybrid Compression Techniques
6.4.4 Some Advanced Image Compression Techniques
6.4.4.1 Vector Quantization (VQ)
6.5 Comparison of Various Compression Algorithms
6.5.1 Performance Parameters of Compression Techniques
6.5.1.1 Peak Signal-to-Noise Ratio
6.5.1.2 Compression Ratio
6.5.1.3 Mean Square Error
6.5.1.4 Structural Similarity Index
6.5.1.5 Bits per Pixel
6.5.1.6 Signal-to-Noise Ratio
6.5.1.7 Percent Rate of Distortion
6.5.1.8 Correlation Coefficient
6.5.1.9 Structural Content
6.6 Applications of Compression Techniques
6.6.1 Satellite Images
6.6.2 Broadcast Television
6.6.3 Genetic Images
6.6.4 Internet Telephony and Teleconferencing
6.6.5 Electronic Health Records
6.6.6 Computer Communication
6.6.7 Remote Sensing via Satellites
References
Part III: Various Application of Image Processing
Chapter 7: Application of Image Processing and Data in Remote Sensing
7.1 Introduction
7.2 Remote Sensing
References
Chapter 8: Application of Image Processing and Data Science in Medical Science
8.1 Introduction
8.2 Ideal Dataset of Medical Imaging for Data Analysis
8.3 Fundamentals of Medical Image Processing
8.3.1 Steps of Image Processing
8.4 Problems with Medical Images
8.4.1 Heterogeneity of Images
8.4.2 Unknown Delineation of Objects
8.4.3 Robustness of Algorithms
8.4.4 Noise Occurrence in Image
8.4.4.1 Speckle Noise
8.5 Categories of Medical Image Data formation
8.5.1 Image Acquisition
8.5.1.1 X-ray Medical Images
8.5.1.2 Tomography Images
8.5.1.3 CT Images
8.5.1.4 Radiography Images
8.5.1.5 MRI
8.5.1.6 Ultrasound Images
8.5.1.7 Thermo Graphic Images
8.5.1.8 Molecular Imaging or Nuclear Medicine
8.5.1.8.1 PET
8.5.1.8.2 SPECT
8.5.2 Image Digitalization
8.5.2.1 Quantization
8.5.2.2 Spatial Sampling
8.5.3 Image Enhancement
8.5.3.1 Histogram Transforms
8.5.3.2 Phase of Registration
8.5.4 Image Data Visualization
8.5.5 Image Data analysis
8.5.5.1 Feature Extraction
8.5.5.2 Image Segmentation
8.5.5.3 Image Classification
8.5.6 Image Management
8.5.6.1 Archiving
8.5.6.2 Communication
8.5.6.3 Retrieval
References
Chapter 9: Application of Image Processing in Traffic Management and Analysis
9.1 Introduction
9.2 Smart Traffic Management Systems
9.2.1 Real-Time System
9.2.2 Data Analysis System
9.3 Review Work
9.4 Working of Real-Time Traffic Management
References
Chapter 10: Application of Image Processing and Data Science in Advancing Education Innovation
10.1 Introduction
10.2 Role of Image Processing in Education
10.3 Integrating Image Processing in Teaching and Learning in Schools
10.4 Role of Image-Based Computerized Learning in Education
10.5 Important Roles of Image Processing in Education
10.6 Assessing Creativity and Motivation in Image-Based Learning Systems
10.6.1 Building Character through Interactive Media
10.6.2 Image Processing
10.6.2.1 Image Acquisition
10.6.2.2 Image Enhancement
10.6.2.3 Image Restoration
10.6.2.4 Color Image Processing
10.6.2.5 Wavelets and Multiresolution Processing
10.6.2.6 Image Compression
10.6.2.7 Morphological Processing
10.6.2.8 Segmentation
10.6.2.9 Representation and Description
10.6.2.10 Object Recognition
10.6.2.11 Learning Content Mapping
10.7 Learners and Educators on the Image-Based Computerized Environment
10.7.1 Teaching Practices
10.7.2 Raising Learners Attainment
10.7.3 Inequalities Reduction among Learners
10.8 Discussion
References
Chapter 11: Application of Image Processing and Data Science in Advancing Agricultural Design
11.1 Introduction
11.2 Image Processing Techniques in Agriculture
11.2.1 Thermal Imaging
Components of Thermal Imaging
11.2.2 Fluorescence Imaging
11.2.3 Hyperspectral Imaging
11.2.4 Photometric (RGB) Feature-Based Imaging
11.3 Application of Digital Image Processing with Data Science in Agriculture
11.3.1 Management of Crop
11.3.2 Identifying the Deficiencies of Nutrition in Plants
11.3.3 Inspection of Quality of Fruits along with Their Sorting and Grading
11.3.4 Estimation of Crop and Land and Tracking of Object
11.3.5 Identification of Diseases in Plants
11.3.6 Precision Farming
11.3.7 Weed Detection
11.4 Newer Techniques in the Agriculture Support System
11.4.1 Aeroponic System
11.4.2 Artificial Intelligence in Agriculture
References
Index