Advanced Engineering Thermodynamics

دانلود کتاب Advanced Engineering Thermodynamics

52000 تومان موجود

کتاب ترمودینامیک مهندسی پیشرفته نسخه زبان اصلی

دانلود کتاب ترمودینامیک مهندسی پیشرفته بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 4


توضیحاتی در مورد کتاب Advanced Engineering Thermodynamics

نام کتاب : Advanced Engineering Thermodynamics
ویرایش : 4
عنوان ترجمه شده به فارسی : ترمودینامیک مهندسی پیشرفته
سری :
نویسندگان :
ناشر : Wiley
سال نشر : 2016
تعداد صفحات : 782
ISBN (شابک) : 1119281032 , 9781119281030
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 14 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Title
Contents
Preface to the First Edition†
Preface to the Second Edition†
Preface to the Third Edition
Preface
Acknowledgments
1. The First Law
1.1 TERMINOLOGY
1.2 CLOSED SYSTEMS
1.3 WORK TRANSFER
1.4 HEAT TRANSFER
1.5 ENERGY CHANGE
1.6 OPEN SYSTEMS
1.7 HISTORY
REFERENCES
PROBLEMS
2. The Second Law
2.1 CLOSED SYSTEMS
2.1.1 Cycle in Contact with One Temperature Reservoir
2.1.2 Cycle in Contact with Two Temperature Reservoirs
2.1.3 Cycle in Contact with Any Number of Temperature Reservoirs
2.1.4 Process in Contact with Any Number of Temperature Reservoirs
2.2 OPEN SYSTEMS
2.3 LOCAL EQUILIBRIUM
2.4 ENTROPY MAXIMUM AND ENERGY MINIMUM
2.5 CARATHÉODORY’S TWO AXIOMS
2.6 A HEAT TRANSFER MAN’S TWO AXIOMS
2.7 HISTORY
REFERENCES
PROBLEMS
3. Entropy Generation, or Exergy Destruction
3.1 LOST AVAILABLE WORK
3.2 CYCLES
3.2.1 Heat Engine Cycles
3.2.2 Refrigeration Cycles
3.2.3 Heat Pump Cycles
3.3 NONFLOW PROCESSES
3.4 STEADY-FLOW PROCESSES
3.5 MECHANISMS OF ENTROPY GENERATION
3.5.1 Heat Transfer across a Temperature Difference
3.5.2 Flow with Friction
3.5.3 Mixing
3.6 ENTROPY GENERATION MINIMIZATION
3.6.1 The Method
3.6.2 Tree-Shaped Fluid Flow
3.6.3 Entropy Generation Number
REFERENCES
PROBLEMS
4. Single-Phase Systems
4.1 SIMPLE SYSTEM
4.2 EQUILIBRIUM CONDITIONS
4.3 THE FUNDAMENTAL RELATION
4.3.1 Energy Representation
4.3.2 Entropy Representation
4.3.3 Extensive Properties versus Intensive Properties
4.3.4 The Euler Equation
4.3.5 The Gibbs–Duhem Relation
4.4 LEGENDRE TRANSFORMS
4.5 RELATIONS BETWEEN THERMODYNAMIC PROPERTIES
4.5.1 Maxwell’s Relations
4.5.2 Relations Measured during Special Processes
4.5.3 Bridgman’s Table
4.5.4 Jacobians in Thermodynamics
4.6 PARTIAL MOLAL PROPERTIES
4.7 IDEAL GAS MIXTURES
4.8 REAL GAS MIXTURES
REFERENCES
PROBLEMS
5. Exergy Analysis
5.1 NONFLOW SYSTEMS
5.2 FLOW SYSTEMS
5.3 GENERALIZED EXERGY ANALYSIS
5.4 AIR CONDITIONING
5.4.1 Mixtures of Air and Water Vapor
5.4.2 Total Flow Exergy of Humid Air
5.4.3 Total Flow Exergy of Liquid Water
5.4.4 Evaporative Cooling
REFERENCES
PROBLEMS
6. Multiphase Systems
6.1 THE ENERGY MINIMUM PRINCIPLE
6.1.1 The Energy Minimum
6.1.2 The Enthalpy Minimum
6.1.3 The Helmholtz Free-Energy Minimum
6.1.4 The Gibbs Free-Energy Minimum
6.1.5 The Star Diagram
6.2 THE STABILITYOF A SIMPLE SYSTEM
6.2.1 Thermal Stability
6.2.2 Mechanical Stability
6.2.3 Chemical Stability
6.3 THE CONTINUITY OF THE VAPOR AND LIQUID STATES
6.3.1 The Andrews Diagram and J. Thomson’s Theory
6.3.2 The van der Waals Equation of State
6.3.3 Maxwell’s Equal-Area Rule
6.3.4 The Clapeyron Relation
6.4 PHASE DIAGRAMS
6.4.1 The Gibbs Phase Rule
6.4.2 Single-Component Substances
6.4.3 Two-Component Mixtures
6.5 CORRESPONDING STATES
6.5.1 Compressibility Factor
6.5.2 Analytical P(v, T) Equations of State
6.5.3 Calculation of Properties Based on P(v,T)and Specific Heat
6.5.4 Saturated Liquid and Saturated Vapor States
6.5.5 Metastable States
REFERENCES
PROBLEMS
7. Chemically Reactive Systems
7.1 EQUILIBRIUM
7.1.1 Chemical Reactions
7.1.2 Affinity
7.1.3 Le Chatelier–Braun Principle
7.1.4 Ideal Gas Mixtures
7.2 IRREVERSIBLE REACTIONS
7.3 STEADY-FLOW COMBUSTION
7.3.1 Combustion Stoichiometry
7.3.2 The First Law
7.3.3 The Second Law
7.3.4 Maximum Power Output
7.4 THE CHEMICAL EXERGY OF FUELS
7.5 COMBUSTION AT CONSTANT VOLUME
7.5.1 The First Law
7.5.2 The Second Law
7.5.3 Maximum Work Output
REFERENCES
PROBLEMS
8. Power Generation
8.1 MAXIMUM POWER SUBJECT TO SIZE CONSTRAINT
8.2 MAXIMUM POWER FROM A HOT STREAM
8.3 EXTERNAL IRREVERSIBILITIES
8.4 INTERNAL IRREVERSIBILITIES
8.4.1 Heater
8.4.2 Expander
8.4.3 Cooler
8.4.4 Pump
8.4.5 Relative Importance of Internal Irreversibilities
8.5 ADVANCED STEAM TURBINE POWER PLANTS
8.5.1 Superheater, Reheater, and Partial Condenser Vacuum
8.5.2 Regenerative Feed Heating
8.5.3 Combined Feed Heating and Reheating
8.6 ADVANCED GAS TURBINE POWER PLANTS
8.6.1 External and Internal Irreversibilities
8.6.2 Regenerative Heat Exchanger, Reheaters, and Intercoolers
8.6.3 Cooled Turbines
8.7 COMBINED STEAM TURBINE AND GAS TURBINE POWER PLANTS
REFERENCES
PROBLEMS
9. Solar Power
9.1 THERMODYNAMIC PROPERTIES OF THERMAL RADIATION
9.1.1 Photons
9.1.2 Temperature
9.1.3 Energy
9.1.4 Pressure
9.1.5 Entropy
9.2 REVERSIBLE PROCESSES
9.2.1 Reversible and Adiabatic Expansion or Compression
9.2.2 Reversible and Isothermal Expansion or Compression
9.2.3 Carnot Cycle
9.3 IRREVERSIBLE PROCESSES
9.3.1 Adiabatic Free Expansion
9.3.2 Transformation of Monochromatic Radiation into Blackbody Radiation
9.3.3 Scattering
9.3.4 Net Radiative Heat Transfer
9.3.5 Kirchhoff’s Law
9.4 THE IDEAL CONVERSION OF ENCLOSED BLACKBODY RADIATION
9.4.1 Petela’s Theory
9.4.2 Unifying Theory
9.5 MAXIMIZATION OF POWER OUTPUT PER UNIT COLLECTOR AREA
9.5.1 Ideal Concentrators
9.5.2 Omnicolor Series of Ideal Concentrators
9.5.3 Unconcentrated Solar Radiation
9.6 CONVECTIVELY COOLED COLLECTORS
9.6.1 Linear Convective Heat Loss Model
9.6.2 Effect of Collector–Engine Heat Exchanger Irreversibility
9.6.3 Combined Convective and Radiative Heat Loss
9.7 EXTRATERRESTRIAL SOLAR POWER PLANT
9.8 CLIMATE
9.9 SELF-PUMPING AND ATMOSPHERIC CIRCULATION
REFERENCES
PROBLEMS
10. Refrigeration
10.1 JOULE–THOMSON EXPANSION
10.2 WORK-PRODUCING EXPANSION
10.3 BRAYTON CYCLE
10.4 INTERMEDIATECOOLING
10.4.1 Counterflow Heat Exchanger
10.4.2 Bioheat Transfer
10.4.3 Distributionof Expanders
10.4.4 Insulation
10.5 LIQUEFACTION
10.5.1 Liquefiers versus Refrigerators
10.5.2 Heylandt Nitrogen Liquefier
10.5.3 Efficiency of Liquefiers and Refrigerators
10.6 REFRIGERATOR MODELS WITH INTERNAL HEAT LEAK
10.6.1 Heat Leak in Parallel with Reversible Compartment
10.6.2 Time-Dependent Operation
10.7 MAGNETIC REFRIGERATION
10.7.1 Fundamental Relations
10.7.2 Adiabatic Demagnetization
10.7.3 Paramagnetic Thermometry
10.7.4 The Third Law of Thermodynamics
REFERENCES
PROBLEMS
11. Entropy Generation Minimization
11.1 COMPETING IRREVERSIBILITIES
11.1.1 Internal Flowand Heat Transfer
11.1.2 Heat Transfer Augmentation
11.1.3 External Flow and Heat Transfer
11.1.4 Convective Heat Transfer in General
11.2 BALANCED COUNTERFLOW HEAT EXCHANGERS
11.2.1 The Ideal Limit
11.2.2 Area Constraint
11.2.3 Volume Constraint
11.2.4 Combined Area and Volume Constraint
11.2.5 Negligible Pressure Drop Irreversibility
11.2.6 The Structure of Heat Exchanger Irreversibility
11.3 STORAGE SYSTEMS
11.3.1 Sensible-Heat Storage
11.3.2 Storage Time Interval
11.3.3 Heat Exchanger Size
11.3.4 Storage Followed by Removal of Exergy
11.3.5 Heating and Cooling Subject to Time Constraint
11.3.6 Latent-Heat Storage
11.4 POWER MAXIMIZATION OR ENTROPY GENERATION MINIMIZATION
11.4.1 Heat Transfer Irreversible Power Plant Models
11.4.2 Minimum Entropy Generation Rate
11.4.3 Fluid Flow Systems
11.4.4 Electrical Machines
11.5 FROM ENTROPY GENERATION MINIMIZATION TO CONSTRUCTAL LAW
11.5.1 The Generation-of-Configuration Phenomenon
11.5.2 Organ Size
REFERENCES
PROBLEMS
12. Irreversible Thermodynamics
12.1 CONJUGATE FLUXES AND FORCES
12.2 LINEARIZED RELATIONS
12.3 RECIPROCITY RELATIONS
12.4 THERMOELECTRIC PHENOMENA
12.4.1 Formulations
12.4.2 The Peltier Effect
12.4.3 The Seebeck Effect
12.4.4 The Thomson Effect
12.4.5 Power Generation
12.4.6 Refrigeration
12.5 HEAT CONDUCTION IN ANISOTROPIC MEDIA
12.5.1 Formulation in Two Dimensions
12.5.2 Principal Directions and Conductivities
12.5.3 The Concentrated Heat Source Experiment
12.5.4 Three-Dimensional Conduction
12.6 MASS DIFFUSION
12.6.1 Nonisothermal Diffusion of a Single Component
12.6.2 Nonisothermal Binary Mixtures
12.6.3 Isothermal Diffusion
REFERENCES
PROBLEMS
13. The Constructal Law
13.1 EVOLUTION
13.2 MATHEMATICAL FORMULATION OF THE CONSTRUCTAL LAW
13.2.1 Properties of Flow Systems with Configuration
13.2.2 Evolution by Increasing Global Performance
13.2.3 Evolution by Increasing Compactness
13.2.4 Evolution by Increasing Flow Territory
13.2.5 Freedom Is Good for Evolution and Survival (Persistence)
13.3 INANIMATE FLOW SYSTEMS
13.3.1 Duct Cross Sections
13.3.2 Open-Channel Cross Sections
13.3.3 Tree-Shaped Fluid Flow and River Basins
13.3.4 Turbulent Flow Structure
13.3.5 Coalescence of Flowing Solid Packets
13.3.6 Cracks, Splashes, and Splats
13.3.7 Dendritic Solidification
13.3.8 Global Circulation and Climate
13.4 ANIMATE FLOW SYSTEMS
13.4.1 Body Heat Loss
13.4.2 Branches, Diameters, and Lengths
13.4.3 Breathing and Heartbeating
13.4.4 Flying, Running, and Swimming
13.4.5 Life Span and Life Travel
13.4.6 Athletics Evolution
13.5 SIZE AND EFFICIENCY: ECONOMIES OF SCALE
13.6 GROWTH, SPREADING, AND COLLECTING
13.7 ASYMMETRY AND VASCULARIZATION
13.8 HUMAN PREFERENCES FOR SHAPES
13.9 THE ARROW OF TIME
REFERENCES
PROBLEMS
Appendix
CONSTANTS
MATHEMATICAL FORMULAS
VARIATIONAL CALCULUS
PROPERTIES OF MODERATELY COMPRESSED LIQUID STATES
PROPERTIES OF SLIGHTLY SUPERHEATED VAPOR STATES
PROPERTIES OF COLD WATER NEAR THE DENSITY MAXIMUM
REFERENCES
Index
Symbols




پست ها تصادفی