توضیحاتی در مورد کتاب Advanced Nanomaterials for Pollutant Sensing and Environmental Catalysis (Micro and Nano Technologies)
نام کتاب : Advanced Nanomaterials for Pollutant Sensing and Environmental Catalysis (Micro and Nano Technologies)
عنوان ترجمه شده به فارسی : نانومواد پیشرفته برای سنجش آلاینده و کاتالیز محیطی (فناوری های میکرو و نانو)
سری :
نویسندگان : Qidong Zhao (editor)
ناشر : Elsevier
سال نشر : 2019
تعداد صفحات : 433
ISBN (شابک) : 0128147962 , 9780128147962
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 23 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
نانومواد پیشرفته برای سنجش آلاینده ها و کاتالیز محیطی جدیدترین پیشرفت ها و اکتشافات علمی در زمینه های حفاظت از محیط زیست و سنجش با فناوری نانو را ارائه می دهد. نویسندگان کتاب، پیشرفتهای اخیر را در نحوه استفاده از نانوتکنولوژی برای ایجاد کنترلهای کارآمدتر آلودگی، با توجه ویژه به نانوحسگرهای فلزی نجیب، ساختارهای میکرو/نانو توخالی جدید با عملکردهای نوآورانه، و نانوکاتالیستهای پیشرفته بر اساس مواد کربنی برای تقسیم آب، برجسته میکنند. هر فصل مبانی فناوری را نشان میدهد، مفاهیم کلیدی را نشان میدهد و آخرین پیشرفتها و چالشها را در این زمینههای چند رشتهای برجسته میکند.
این کتاب منبع ارزشمندی برای محققان دانشگاهی، دانشجویان تحصیلات تکمیلی و R است.
فهرست مطالب :
Cover
Advanced Nanomaterials for Pollutant Sensing and Environmental Catalysis
Copyright
List of Contributors
Preface
1 Hollow Micro- and Nanomaterials: Synthesis and Applications
1.1 Introduction
1.1.1 Single-Shelled Hollow Structures
1.1.2 Multishelled Hierarchical Hollow Structures
1.1.3 Hollow Materials with Open Structures
1.1.4 Hollow-Structured Hybrid Materials
1.2 Some Common Features of Hollow Micro- and Nanostructures
1.2.1 Shell Number
1.2.2 Shell Size, Thickness, and Intershell Spacing
1.2.3 Morphology
1.3 Fabrication Methodology of Hollow Structures
1.3.1 Hard-Templating Methods
1.3.1.1 Polymer-Based Hard Templates
1.3.1.2 Silica-Based Hard Templates
1.3.1.3 Carbon-Based Templates
1.3.1.4 Ceramic Templates
1.3.1.5 Hard Templates Based on Inorganic and Complex Salts
1.3.1.6 Natural Materials as Hard Templates
1.3.2 Soft-Templating Methods
1.3.2.1 Emulsion-Based Soft Templates
1.3.2.2 Micelle/Vesicle-Based Soft Templates
1.3.2.3 Gas Bubble-Based Soft Templates
1.3.3 Self-Template Methods
1.3.3.1 Surface-Protected Etching
1.3.3.2 Ostwald Ripening
1.3.3.3 The Kirkendall Effect
1.3.3.4 Galvanic Replacement
1.3.4 Template-Free Methods
1.4 Application for Sensing and Catalysis
1.4.1 Catalysis
1.4.2 Sensors
1.5 Utilization in Photocatalysis for Degrading Pollutants
1.5.1 Photocatalysis
1.5.2 Photocatalytic Degradation of Organic Compounds
1.5.3 Photocatalytic Energy Conversion
1.6 Application for Rechargeable Batteries and Supercapacitors
1.6.1 Lithium-Ion Batteries
1.6.2 Supercapacitors
1.7 Conclusion
References
Further Reading
2 Noble Metal–Based Nanosensors for Environmental Detection
2.1 Properties of Noble-Metal Nanoparticles
2.1.1 Surface Plasmon Resonance
2.1.2 Fluorescence
2.1.3 Catalytic Activity
2.1.4 Surface Functionalization
2.2 Colorimetric Sensing of Heavy Metal
2.2.1 Control of Surface Plasmon Resonance Properties
2.2.2 Aggregation of Dispersed Noble-Metal Nanoparticles
2.2.3 Disassembly of Aggregated Noble-Metal Nanoparticles
2.2.4 The Sensitivity of Noble-Metal Nanoparticles-Based Colorimetric Sensing
2.3 Fluorescence-Based Sensing Towards Biomolecules
2.3.1 Fluorescence of Ultrasmall Gold Nanoparticles
2.3.2 Fluorescence Quenching by Surface Plasmon Resonance
2.3.3 Assembly With Quantum Dots
2.4 Surface-Enhanced Raman Spectrum-Based Application for Environmental Detection
2.4.1 Noble-Metal Nanoparticles and Assemblies as Substrates
2.4.2 Nanostructured Metal Arrays and Films as Substrates
2.4.3 Detection of Environmental Pollutants
2.4.4 Detection of Food Residual Pesticides
2.4.5 Selectivity of Surface-Enhanced Raman Spectrum-Based Sensing
2.5 Electrochemical Sensors
2.5.1 Noble-Metal Nanoparticles as Electroactive Labels
2.5.2 Noble-Metal Nanoparticles as the Active Interface for Constructing Electrochemical Sensing
2.5.3 Electron Transferring–Based Sensing Platform
2.6 Conclusion and Future Perspectives
Acknowledgment
References
3 Semiconductor Nanocrystal–Based Nanosensors and Metal Ions Sensing
3.1 General Properties of Semiconductor Nanocrystals
3.1.1 Electronic Structure of Semiconductor Nanocrystals
3.1.2 Optimizing the Photoluminescence of Semiconductor Nanocrystals
3.2 Semiconductor Quantum Dot–Based Nanosensors: Principles and Applications
3.2.1 Composition of Nanosensors
3.2.2 Principles of Nanosensor Design and Applications
3.2.2.1 Colorimetrics
3.2.2.2 Fluorescence Mode
3.2.2.3 Fluorescence Resonance Energy Transfer
3.2.2.4 Surface-Enhanced Raman Scattering
3.2.2.5 Voltammetry
3.3 Sensing of Metal Ions in the Environmental Field
3.3.1 II–VI Nanocrystals for Nanosensors
3.3.2 III–V Nanocrystals for Nanosensors
3.3.3 Ternary Nanocrystals
3.4 In Vivo and In Vitro Sensing of Metal Ions
3.5 The Future of Advanced Quantum Dot–Based Nanosensors
References
4 Semiconductor Nanocrystals for Environmental Catalysis
4.1 Introduction to the Basics of the Catalysis and Flexibility Provided by Nanocrystals
4.2 Preparation and Characterization of Nanocrystals for Catalysis
4.2.1 Compositions
4.2.1.1 Metal Chalcogenides Binary Nanocrystals
4.2.1.2 Ternary Nanocrystals
4.2.1.3 Metal Oxide Nanocrystals
4.2.2 Nanostructures for Catalysis
4.2.2.1 Zero-Dimension Nanocrystals-Based Catalysts
4.2.2.2 One-Dimensional Nanocrsytals-Based Catalysts
4.2.2.3 Two-Dimensional Nanocrystal-Based Catalysts
4.2.2.4 Three-Dimensional Nanocrystals-Based Catalysts
4.3 Nanocrystals for CO2 Catalytic Conversion
4.3.1 CO2 Catalytic Reduction
4.3.2 Metal Chalcogenides Nanocrystals for CO2 Reduction
4.3.3 Metal Oxide Nanocrystals for CO2 Reduction
4.3.4 Nanocrystals for Catalytic Pollutant Removal
4.3.5 Binary Nanocrystals
4.3.6 Ternary and Quaternary Nanocrystals
4.4 The Future of Nanocrystals for Catalysis
Acknowledgment
References
5 Nano-Gold Boosted Environmental Catalysis
5.1 Introduction to the Catalytic Properties of Gold
5.2 Synthesis and Characterization of Nano-Gold
5.2.1 Preparation of Supported Gold Nanoparticles
5.2.2 Preparation of Surface Plasmon Resonance–Enhanced Photocatalysts
5.2.3 Factors for Catalytic Activity
5.3 Environmental Catalysis of Supported Gold Catalysts
5.3.1 Catalytic Oxidation of Carbon Monoxide
5.3.2 Catalytic Decomposition of Volatile Organic Compounds
5.3.3 Removal of Nitrogen Oxides
5.3.4 Ozone Decomposition
5.4 Surface Plasmon Resonance–Enhanced Photocatalysis
5.4.1 Design of Surface Plasmon Resonance–Enhanced Photocatalysts
5.4.2 Mechanism of Surface Plasmon Resonance–Enhanced Photocatalysis
5.4.3 Surface Plasmon Resonance–Enhanced Photocatalysis for Air Purification
5.4.4 Photocatalytic Treatment of Wastewater
5.5 Conclusion and Future Perspectives
Acknowledgments
References
6 Nanomaterials Developed for Removing Air Pollutants
6.1 Introduction to the General Principles of Air Pollutants Removal by Nanomaterials
6.2 Reactive Nanomaterials With Well-Defined Physical and Chemical Structures
6.2.1 Nanostructured Adsorbents
6.2.2 Metallic Nanostructured Catalyst
6.2.3 Nonmetallic Nanostructured Catalysts
6.2.4 Nanocomposite Catalysts
6.3 Common Air Pollutants and Challenges in Air Purification
6.3.1 Typical Inorganic Air Pollutants
6.3.2 Organic Air Pollutants
6.4 Nanomaterials for Eliminating Air Pollutants Through Adsorption and Separation
6.4.1 Air Pollutants Adsorption by Nanomaterials
6.4.2 Air Pollutants Separation Through Nanostructured Membranes
6.5 Converting Air Pollutants Through Catalytic Pathways of Nanomaterials
6.5.1 Reductive Catalysis Over Nanomaterials
6.5.2 Oxidative Catalysis
6.6 Technical Aspects and Practical Applications
6.6.1 Device Performance and Economics
6.6.2 Mechanisms Limiting Performance in Practical Applications
6.7 Challenges and Perspective
Acknowledgment
References
Further Reading
7 Advanced Nanomaterials for Degrading Persistent Organic Pollutants
7.1 Introduction to the Advantages of Nanomaterials Toward Persistent Organic Pollutants Removal
7.1.1 Adsorption Capability of Specific Nanomaterials Toward Persistent Organic Pollutants
7.1.2 Activity of Specific Nanomaterials in Degrading Persistent Organic Pollutants
7.2 Current Status and Challenges in Degrading Anthropogenic Persistent Organic Pollutants
7.2.1 Current Status on Identifying and Eliminating Anthropogenic Persistent Organic Pollutants
7.2.2 Challenges in Degrading Anthropogenic Persistent Organic Pollutants in the Environment
7.3 Degrading Persistent Organic Pollutants by Electrochemical and Photocatalytic Techniques Enhanced With Nanomaterials
7.3.1 Electrochemical Techniques
7.3.2 Photocatalytic Techniques
7.3.3 Synergistic Methods
7.4 Perspective on Developing Efficient Nanomaterials for Removing Persistent Organic Pollutants
Acknowledgments
References
Further Reading
8 Power Ready for Driving Catalysis and Sensing: Nanomaterials Designed for Renewable Energy Storage
8.1 Introduction to the Basics of Renewable Energy Storage and Opportunities From Nanomaterials
8.2 Nanomaterials for Lithium-Ion Batteries
8.2.1 Positive Electrode Nanomaterials for Lithium-Ion Batteries
8.2.2 Negative Electrode Nanomaterials for Lithium-Ion Batteries
8.2.3 Nanomaterials for Lithium–Sulfur Batteries
8.3 Nanomaterials for Sodium-Ion Batteries
8.3.1 Nanomaterials for Sodium-Ion Batteries
8.3.2 Nanomaterials for Sodium–Sulfur Batteries
8.4 Rechargeable Batteries for Driving Catalysis and Sensing
8.5 Challenges and Future Perspectives
Acknowledgments
References
9 Colloidal Semiconductor Quantum Dot–Based Multicomponent Artificial System for Hydrogen Photogeneration
9.1 Introduction to the Basics of Nanomaterials for Hydrogen Photogeneration
9.2 Structure Design of Colloidal Semiconductor Quantum Dots
9.2.1 Single Component Quantum Dots
9.2.2 Quasi-Type II CdSe/CdS Dot-in-Rod Nanorods
9.2.3 Core–Shell Quantum Dots
9.3 Surface Treatments
9.3.1 Metal
9.3.2 Metal Sulfides
9.3.3 Hydrogenases and Their Mimics
9.3.4 Molecule
9.4 Conclusion
Acknowledgments
References
10 Nanocarbon-Based Hybrids as Electrocatalysts for Hydrogen and Oxygen Evolution From Water Splitting
10.1 Introduction to the Principles of Water Splitting Through Electrocatalysis
10.2 Nanocarbons
10.2.1 1D Nanocarbon-Based Hybrids
10.2.2 2D Nanocarbon-Based Hybrids
10.2.3 3D Nanocarbon-Based Hybrids
10.3 Synthesis, Structural Characteristics, and Electrochemical Performance of Nanocarbon-Based Hybrids
10.3.1 Noble Metal/Nanocarbon Electrocatalysts
10.3.1.1 Nonnoble Metal/Nanocarbon Electrocatalysts
10.3.2 Metal-Free/Nanocarbon Electrocatalysts for OER and HER
10.4 Electrochemical Properties of Electrocatalysts Supported on Graphene/Modified-Graphene
10.4.1 Graphene/Modified-Graphene Supported Precious-Metal Electrocatalysts
10.4.2 Graphene/Modified-Graphene Supported Nonprecious-Metal Electrocatalysts
10.4.3 Graphene/Modified-Graphene Supported Metal-Free Electrocatalysts
10.5 Conclusions and Future Perspectives
Acknowledgments
References
Index
Back Cover
توضیحاتی در مورد کتاب به زبان اصلی :
Advanced Nanomaterials for Pollutant Sensing and Environmental Catalysis presents the most recent advances and scientific discoveries in the fields of environmental protection and sensing with nanotechnology. The book's authors highlight recent advancements in how nanotechnology is being used to create more efficient pollution controls, with particular attention given to noble metal nanosensors, novel hollow micro-/nanostructures with innovative functions, and advanced nanocatalysts based on carbon materials for water splitting. Each chapter demonstrates the fundamentals of the technology, illustrating key concepts and highlighting the latest developments and challenges in these multi-disciplinary fields.
This book is a valuable resource for academic researchers, graduate students and R&D professionals in the fields of material science, chemistry, environmental science and nanotechnology.