توضیحاتی در مورد کتاب Advanced Nanostructures for Environmental Health
نام کتاب : Advanced Nanostructures for Environmental Health
عنوان ترجمه شده به فارسی : نانوساختارهای پیشرفته برای سلامت محیط
سری : Micro and Nano Technologies
نویسندگان : Baia M., Pap Z., Hernadi K., Baia M. (ed.)
ناشر : Elsevier
سال نشر : 2020
تعداد صفحات : 579
ISBN (شابک) : 9780128158821
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 23 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover
Half Title
Advanced Nanostructures for Environmental Health
Copyright
Contents
About the Editors
Contributors
1. When the nanostructures meet the environmental health key issues
1.1 About environmental health and nanostructures and their relation with the real life
1.2 Approaches regarding the advanced nanostructures used in environmental health issues
1.3 Predictions about nanostructure involvement in environmental health applications
Acknowledgment
References
Further reading
2. Sensitive detection of organic pollutants by advanced nanostructures
2.1 Introduction
2.2 Detection of hydrocarbons: Fuels and PAHs
2.2.1 Fuels
2.2.2 Polycyclic aromatic hydrocarbons
2.3 Organic solvents and VOCs
2.3.1 Detection of organic solvents in aqueous environment and contaminated water
2.3.2 Monitoring of VOCs by gas sensors
2.4 Persistent organic pollutants: Detection of pesticides and halogenated biphenyls and bisphenols
2.4.1 Pesticides
2.4.2 Halogenated biphenyls and bisphenols
2.5 Detection schemes for molecules relevant in industrial production and water treatment
2.5.1 Phenols
2.5.2 Dye molecules
2.5.3 Other organic pollutants from industrial production
2.5.4 Disinfection agents
2.6 Conclusions
Acknowledgment
References
3. Nanostructures based detection of pharmaceuticals and other contaminants of emerging concern
3.1 Introduction
3.2 Synthesis of the nanostructures/nanocomposites used for sensing platforms
3.2.1 Carbon-based nanostructures/nanocomposites
3.2.1.1 Carbon nanotubes and their nanocomposites
3.2.1.2 Graphenes and their nanocomposites
3.2.2 Metallic nanostructures
3.2.3 Oxide nanostructures
3.3 Pharmacologically active substances
3.3.1 Electrochemical and optical detection of pharmaceutical compounds
3.3.1.1 Electrochemical and optical detection of acetaminophen
3.3.1.2 Electrochemical and optical detection of folic acid
3.3.1.3 Electrochemical detection of α-lipoic acid
3.3.1.4 Electrochemical and optical detection of melatonin
3.3.1.5 Electrochemical detection of azathioprine
3.3.2 The performance of sensing platforms in the hormone field
3.3.3 The performance of sensing platforms in the toxin/neurotoxin field
3.4 Conclusions and perspectives
Acknowledgments
References
4. Sensitive detection of metals and metalloids by using nanostructures and fluorimetric method
4.1 Introduction
4.1.1 The importance of metals and metalloids
4.1.2 Advantages of fluorimetric methods
4.2 Fluorescence of nanostructures
4.2.1 Noble metal nanoparticles
4.2.2 Metal chalcogenide quantum dots
4.2.3 Metal oxide nanoparticles
4.2.4 Upconversion nanomaterials
4.2.5 Carbon-based nanomaterials
4.3 Metal and metalloid detection
4.3.1 Silver detection
4.3.1.1 Inorganic nanostructures
4.3.1.2 Carbon-based nanostructures
4.3.2 Aluminum detection
4.3.2.1 Inorganic nanomaterials
4.3.2.2 Carbon-based nanomaterials
4.3.2.3 Organic nanomaterials
4.3.2.4 Organic-inorganic hybrid nanomaterials
4.3.3 Cobalt detection
4.3.3.1 Inorganic nanomaterials
4.3.3.2 Organic nanomaterials
4.3.4 Mercury detection
4.3.4.1 Noble metal nanocluster and nanoparticles
4.3.4.2 Magnetite nanoparticles
4.3.4.3 Other nanostructures
4.3.5 Cadmium detection
4.3.5.1 Metal nanoparticles
4.3.5.2 Metal chalcogenides
4.3.5.3 Organic nanoparticles
4.3.5.4 Other nanostructures
4.3.6 Zinc detection
4.3.6.1 Metal nanomaterials
4.3.6.2 Magnetite nanomaterials
4.3.6.3 Metal chalcogenides
4.3.6.4 Carbon-based nanomaterials
4.3.6.5 Other nanomaterials
4.3.7 Lead detection
4.3.7.1 Au nanomaterials
4.3.7.2 Other metal nanomaterials
4.3.7.3 Carbon-based nanomaterials
4.3.7.4 Other nanostructures
4.3.8 Iron detection
4.3.8.1 Inorganic nanostructures
4.3.8.2 Carbon nanomaterials
4.3.8.3 Other nanostructures
4.3.9 Copper detection
4.3.9.1 Inorganic nanostructures
4.3.9.2 Carbon-based nanostructures
4.3.9.3 Polymeric nanostructures
4.3.9.4 Other nanostructures
4.3.10 Chromium detection
4.3.10.1 Inorganic nanostructures
4.3.10.2 Carbon-based nanostructures
4.3.10.3 Other nanostructures
4.3.11 Arsenic detection
4.3.11.1 Inorganic nanomaterials
4.3.11.2 Carbon-based nanomaterials
4.3.11.3 Aptasensors
4.3.12 Gold detection
4.3.13 Calcium detection
4.3.14 Manganese detection
4.3.15 Tin detection
4.4 Conclusion
References
5. Heavy metal and metalloid electrochemical detection by composite nanostructures
5.1 Introduction
5.2 Up-to-date developments in the nanocomposite material based electrochemical sensors for detection of heavy metals and metalloids
5.3 Synthesis, structure, morphology, and application of carbon composite materials for metal and metalloid detection
5.3.1 Graphite composite-based electrode
5.3.2 Porous carbon composite-based electrodes
5.3.3 Carbon nanotube composite-based electrode
5.3.4 Graphene composite based electrodes
5.4 Conclusions
Acknowledgment
References
6. Detection of gas molecules by means of spectrometric and spectroscopic methods
6.1 Introduction
6.2 Mass spectrometry techniques
6.2.1 Gas chromatography coupled to mass spectrometry
6.2.2 Isotope-ratio mass spectrometry
6.2.3 Membrane-inlet mass spectrometry
6.2.4 Chemical ionization
6.2.4.1 Selected-ion flow-tube mass spectrometry
6.2.4.2 Proton-transfer reaction mass spectrometry
6.2.4.3 Direct analysis in real-time mass spectrometry
6.2.5 Summary of mass spectrometric methods
6.3 Ion-mobility spectrometry
6.4 Laser spectroscopic techniques
6.4.1 Absorption methods
6.4.1.1 Infrared absorption spectroscopy
6.4.1.2 Tunable diode laser absorption spectroscopy
6.4.1.3 Cavity-enhanced absorption spectroscopy
6.4.1.4 Differential optical absorption spectroscopy
6.4.1.5 LIDAR methods
6.4.1.6 Photoacoustic spectroscopy
6.4.2 Fluorescence methods
6.4.2.1 Laser-induced fluorescence
6.4.2.2 Chemiluminescence
6.4.3 Raman spectroscopy
6.4.3.1 Enhancement methods
6.5 Summary
Acknowledgment
References
7. Advanced composite nanostructures as gas sensors
7.1 Introduction
7.2 Indirect gas-sensing techniques using composite nanostructures; general principles, solutions, and materials
7.2.1 Catalytic combustion sensors
7.2.2 Thermal conductivity sensors
7.2.3 Modern variations in the catalytic combustion and thermal conductivity sensors
7.2.4 Conductivity-based sensors
7.2.5 Work function-based sensors
7.2.6 Electrochemical sensors
7.2.7 Acoustic gas sensors
7.3 Some specific applications of composite nanostructures in gas sensing with typical sensors performances, preparation methods and material properties
7.3.1 Gas filtering with zeolitic materials and composites
7.3.2 Gas filtering with porous carbon and composites
7.3.3 Gas filtering using thin films
7.3.4 Use of nanocomposite films and nanostructures as active layer in gas sensors
7.4 Summary and conclusions
References
8. Advanced nanostructures for microbial contaminants detection by means of spectroscopic methods
8.1 Introduction
8.2 Detecting microbial contaminants by SERS
8.2.1 Direct SERS detection of microbial contaminants
8.2.2 In situ preparation of SERS active substrates for direct detection of microbial contaminants
8.2.3 Direct SERS detection of membrane fouling
8.2.4 Indirect SERS detection of microbial contaminants
8.2.5 SERS detection of pathogenic contaminants in microfluidic device
8.3 Detecting microbial contaminants by IR spectroscopy
8.4 Detecting microbial contaminants by fluorescence spectroscopy
8.5 Detecting microbial contaminants by localized or surface plasmon resonance (LSPR or SPR)
8.6 Detecting microbial contaminants by impedance spectroscopy
8.7 Conclusions and outlook
Acknowledgments
References
9. Semiconductor mixed oxides as innovative materials for the photocatalytic removal of organic pollutants
9.1 Introduction
9.2 Principles of heterogeneous photocatalysis
9.3 Mixed TiO2-metal oxides photocatalysts
9.3.1 Mixed TiO2 polymorphs
9.3.2 TiO2-SiO2 mixed oxides
9.3.3 TiO2-ZnO mixed oxides
9.3.4 TiO2-WO3 mixed oxides
9.3.5 TiO2-Fe2O3 mixed oxides
9.3.6 TiO2–γ-Fe2O3 and TiO2-Fe3O4 mixed oxides
9.3.7 TiO2-SnO2 mixed oxides
9.3.8 TiO2-Cu2O mixed oxides
9.3.9 TiO2-ZrO2 mixed oxides
9.3.10 TiO2-CeO2 mixed oxides
9.4 Mixed ZnO-metal oxides photocatalysts
9.4.1 ZnO-SnO2 mixed oxides
9.4.2 ZnO-CuO mixed oxides
9.4.3 ZnO-Fe2O3 mixed oxides
9.4.4 ZnO-WO3 mixed oxides
9.5 Conclusions
References
10. Composite nanostructures as potential materials for water and air cleaning with enhanced efficiency
10.1 Current trends in environmental depollution
10.2 Photocatalysis
10.2.1 Heterogeneous photocatalysis
Step 1: Pollutant(s) adsorption on the photocatalytic surface
Step 2: Photoactivation of the catalyst under irradiation
Step 3: The oxidation of the pollutant(s) or intermediate products
Step 4: Desorption of the intermediate or final oxidation products
10.2.2 Photocatalytic materials for environmental applications
10.2.3 Photocatalytic composite structures
10.2.3.1 The CIS-TiO2-SnO2 composites photocatalyst
10.2.3.2 The photocatalyst composites having as narrow bandgap the CuxS semiconductor
10.2.3.3 The composite photocatalysts SnO2/CuxS/ZnO and SnO2/CuxS/TiO2
10.2.3.4 The composite photocatalysts CZTS/TiO2
10.2.3.5 Continuous flow photocatalytic processes
10.2.3.6 New trends on composite photocatalytic structures
10.3 Concluding remarks
Acknowledgments
References
11. Removal of bacteria, viruses, and other microbial entities by means of nanoparticles
11.1 Literature prescreening
11.2 Bio-nanoparticles—Valuable biochemical structures for living organisms
11.3 Noble NPs play a key role as antimicrobial agents
11.3.1 Gold nanoparticles
11.3.2 Silver nanoparticles
11.3.3 Platinum nanoparticles
11.4 Other metal and metal oxide nanoparticles with microbial applications
11.5 Bio-nanomaterials (nanocomposites) produced by microbes with microbal applications
11.6 Removal of pathogenic strains from different environments
11.7 Conclusions
References
12. Pilot-plant scaled water treatment technologies, standards for the removal of contaminants of emerging concern based on photocatalytic materials
12.1 Photocatalysis, photocatalytic reactors, standardization in publication databases
12.2 Issues concerning photocatalytic reactors
12.3 Types of photoreactors used
12.4 Contaminants of emerging concern (CECs) in drinking water
12.5 Photocatalytic reactors for CEC degradation and the possible drawbacks
12.6 Standardization of photocatalysis: It is good for CECs?
12.7 Conclusions
12.8 New insights and trends—Final remarks
Annex 12.1
Acknowledgements
References
13. Perspectives of environmental health issues addressed by advanced nanostructures
13.1 Nanostructures—Synthesis, properties, and varieties
13.2 Environmental remediation by photocatalytic approaches—New trends, perspectives, and issues
13.3 Use of vibrational spectroscopy to characterize nanostructures—Chances and challenges
13.4 Detection of gaseous pollutants
13.5 The problem with everything nanosized
13.6 Concluding remarks
References
Further reading
Index
Cover back