توضیحاتی در مورد کتاب Advanced Rare Earth-Based Ceramic Nanomaterials
نام کتاب : Advanced Rare Earth-Based Ceramic Nanomaterials
عنوان ترجمه شده به فارسی : نانومواد سرامیکی نادر مبتنی بر زمین
سری : Elsevier Series on Advanced Ceramic Materials
نویسندگان : Sahar Zinatloo-Ajabshir
ناشر : Elsevier
سال نشر : 2022
تعداد صفحات : 403
ISBN (شابک) : 0323899579 , 9780323899574
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 25 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Advanced Rare Earth-Based Ceramic Nanomaterials
Copyright
Contents
List of contributors
1 Advanced rare earth-based ceramic nanomaterials at a glance
1.1 Rare earth elements
1.2 Rare earth-based ceramic nanomaterials
References
2 Ceria and rare earth oxides (R2O3) ceramic nanomaterials
2.1 General introduction
2.1.1 Ceria (CeO2)
2.1.2 Rare earth oxides (R2O3)
2.2 Fabrication methods
2.3 Applications
2.4 Conclusion and outlook
References
3 Rare earth cerate (Re2Ce2O7) ceramic nanomaterials
3.1 General introduction
3.2 Lanthanide cerates (Ln2Ce2O7)
3.3 Preparation methods
3.4 Applications
3.5 Conclusion and outlook
References
4 Rare earth zirconate (Re2Zr2O7) ceramic nanomaterials
4.1 General introduction
4.2 Preparation methods of Re2Zr2O7 ceramic nanomaterials
4.2.1 Solid state reaction
4.2.2 Coprecipitation
4.2.3 Hydrothermal
4.2.4 Sol-gel
4.2.5 Combustion
4.2.6 Other preparation approaches Ln2Zr2O7 ceramic nanomaterials
4.2.6.1 Molten salt
4.2.6.2 Co-ions complexation
4.2.6.3 Cathode plasma electrolysis
4.2.6.4 Complex precipitation
4.2.6.5 Precursor approach
4.2.6.6 Floating zone
4.3 Applications of Re2Zr2O7 ceramic nanomaterials
4.3.1 Photocatalytic applications
4.3.1.1 Photocatalytic performance of Re2Zr2O7 nanocomposites
4.3.1.2 Photocatalytic performance of Re2Zr2O7 nanocomposites
4.3.2 Catalytic activity of Re2Zr2O7 nanomaterials
4.3.3 Re2Zr2O7 materials as thermal barrier coatings
4.3.3.1 Physical properties of Re2Zr2O7 ceramic nanomaterials based TBCs
4.3.3.1.1 Porosity and coating density
4.3.3.1.2 Sintering behavior
4.3.3.1.3 Cracks and pores morphology
4.3.3.2 Mechanical properties of Re2Zr2O7 ceramic nanomaterials based TBCs
4.3.3.2.1 Elastic modulus
4.3.3.2.2 Fracture toughness and hardness
4.3.3.2.3 Erosion resistance
4.3.3.3 Thermal properties of Re2Zr2O7 ceramic nanomaterials based TBCs
4.3.3.3.1 Melting point temperature
4.3.3.3.2 Thermal conductivity
4.4 Conclusion and outlook
References
5 Rare earth orthovanadate ceramic nanomaterials
5.1 General introduction
5.2 Fabrication methods
5.3 Applications
5.4 Conclusion and outlook
References
6 Rare earth titanate ceramic nanomaterials
6.1 General introduction
6.1.1 Lanthanum titanates
6.1.2 Cerium titanates
6.1.3 Praseodymium titanates
6.1.4 Neodymium titanates
6.1.5 Samarium titanates
6.1.6 Europium titanates
6.1.7 Gadolinium titanates
6.1.8 Terbium titanates
6.1.9 Dysprosium titanates
6.1.10 Holmium titanate
6.1.11 Erbium titanates
6.1.12 Ytterbium titanates
6.1.13 Lutetium titanates
6.2 Fabrication of lanthanide titanate nanostructures
6.3 Conclusion and outlook
References
7 Rare-earth-based tungstates ceramic nanomaterials: recent advancements and technologies
7.1 General introduction
7.2 Characteristics of common Ln–W–O compounds
7.2.1 Scandium tungstates
7.2.2 Yttrium tungstates
7.2.3 Lanthanum tungstates
7.2.4 Cerium tungstates
7.2.5 Gadolinium tungstates
7.2.6 Dysprosium tungstates
7.3 Crystal structures
7.4 Synthesis techniques
7.4.1 Wet chemical methods
7.4.2 Dry-chemical methods
7.4.3 Preparation of rare-earth-based tungstates (Ln–W–O)
7.5 Common properties
7.5.1 Ionic conduction
7.5.2 Thermal expansion
7.6 Common applications
7.6.1 Composite technology
7.6.2 Solar cell
7.6.3 Catalytic activity
7.6.4 Fuel cell
7.7 Conclusion and outlook
References
8 Rare earth-based ceramic nanomaterials—manganites, ferrites, cobaltites, and nickelates
8.1 General introduction
8.2 Rare-earth ferrites
8.2.1 Short introduction of rare-earth ferrites
8.2.2 Synthesis methods of rare-earth ferrites
8.2.3 Application of rare-earth ferrites
8.3 Rare-earth manganites
8.3.1 Short introduction of rare-earth manganites
8.3.2 Synthesis methods of rare-earth manganites
8.3.3 Application of rare-earth manganites
8.4 Rare-earth cobaltites
8.4.1 Short introduction of rare-earth cobaltites
8.4.2 Synthesis methods of rare-earth cobaltites
8.4.3 Application of rare-earth cobaltites
8.5 Rare-earth nickelates
8.5.1 Short introduction of rare-earth nickelates
8.5.2 Synthesis methods of rare-earth nickelates
8.5.3 Application of rare-earth nickelates
8.6 Conclusion and outlook
References
9 Rare earth–doped SnO2 nanostructures and rare earth stannate (Re2Sn2O7) ceramic nanomaterials
9.1 General introduction
9.1.1 Rare earth–doped SnO2 nanostructures
9.2 Preparation methods of rare earth–doped SnO2 nanostructures and rare earth stannate (Re2Sn2O7) ceramic nanomaterials
9.3 Applications of rare earth–doped SnO2 nanostructures and rare earth stannate (Re2Sn2O7) ceramic nanomaterials
9.3.1 Nanosensor
9.3.2 Photocatalysis
9.3.3 Solar cells
9.3.4 Transistor
9.4 Conclusion and outlook
References
10 Rare-earth molybdates ceramic nanomaterials
10.1 General introduction
10.2 Preparation methods of rare-earth molybdates ceramic nanomaterials
10.2.1 Coprecipitation route
10.2.2 Sonochemical route
10.2.3 Solid-phase route
10.2.4 Hydrothermal method
10.3 Applications methods of rare-earth molybdates ceramic nanomaterials
10.3.1 Electrocatalyst
10.3.2 Photocatalyst
10.3.3 Light-emitting diodes
10.3.4 Biosensor
10.4 Conclusion and outlook
References
11 Rare earth–doped semiconductor nanomaterials
11.1 General introduction
11.1.1 Doping of semiconductor
11.1.2 Rare earth elements
11.2 Applications of RE-doped semiconductor nanomaterial
11.3 RE-doped semiconductors
11.3.1 Silicon
11.3.1.1 Er-doped silicon
11.3.1.2 Eu-doped silicon
11.4 III–V RE-doped semiconductors
11.4.1 III-N
11.4.1.1 Optical properties
11.4.1.2 Magnetic properties
11.4.2 Other III–V
11.5 Re-doped metal oxides
11.6 RE-doped perovskite
11.7 Synthesis methods of RE-doped semiconductors
11.7.1 Physical methods
11.7.1.1 Molecular beam epitaxy
11.7.1.2 Metal–organic vapor phase epitaxy
11.7.1.3 Flash lamp annealing
11.7.1.4 Reactive magnetron cosputtering
11.7.2 Wet chemical methods
11.7.2.1 Chemical precipitation
11.7.2.2 Sol–gel combustion
11.8 Rare earth elements resources and their recycling
11.9 Conclusion and outlook
References
12 Rare-earth-based nanocomposites
12.1 General introduction
12.2 Nanocomposite materials
12.2.1 Description
12.2.2 Ceramic matrix nanocomposites
12.2.3 Metal matrix nanocomposites
12.2.4 Polymer matrix nanocomposites
12.3 Why dose rare-earth elements indicate many applications?
12.4 Properties of rare earth elements based nanocomposites that leads to medical and biological applications
12.4.1 Fluorescence, CT, and MRI imaging
12.4.2 Tumor therapy
12.4.3 Drug delivery
12.4.4 Tumor targeting of NPs
12.5 Synthesis and functionalization of RE-based nanocomposites
12.5.1 Coprecipitation method
12.5.2 Sol-gel method
12.5.3 Thermal decomposition method
12.5.4 Hydrothermal method
12.5.5 Solvothermal method
12.5.6 Microemulsion method
12.6 Conclusion and outlook
References
13 Rare earth–based compounds for solar cells
13.1 General information
13.2 Application of RE-based compounds in solar cells
13.2.1 Perovskite solar cells
13.2.1.1 Crystal structure of lead halide perovskites
13.2.1.2 RE-doped lead halide perovskites
13.2.2 Dye-sensitized solar cells
13.2.2.1 Structure of dye-sensitized solar cells
13.2.2.2 RE codoped for utilization in dye-sensitized solar cells
13.2.3 Application of REs in other kinds of solar cells
13.3 Synthesis procedures
13.3.1 Solution combustion procedure
13.3.2 Sol–gel procedure
13.3.3 Hydrothermal method
13.3.4 Coprecipitation method
13.3.5 Solid-state method
13.4 Conclusion and outlook
References
Index