توضیحاتی در مورد کتاب Advances in contact angle, wettability and adhesion. Volume 4
نام کتاب : Advances in contact angle, wettability and adhesion. Volume 4
عنوان ترجمه شده به فارسی : پیشرفت در زاویه تماس، ترشوندگی و چسبندگی. جلد 4
سری :
نویسندگان : Mittal, K L(Editor)
ناشر : Wiley-Scrivener
سال نشر : 2019;2020
تعداد صفحات : 346
ISBN (شابک) : 9781119592549 , 9781119593294
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 4 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover......Page 1
Title Page......Page 5
Copyright Page......Page 6
Contents......Page 7
Preface......Page 15
1.1 Introduction......Page 19
1.2 Theoretical Background......Page 21
1.3.1 Materials......Page 23
1.3.2 Experimental Apparatus and Procedures......Page 24
1.4 Results and Discussion......Page 25
References......Page 33
2.1 Introduction......Page 35
2.2 Intrinsic Wetting Properties of REOs......Page 38
2.3 Nanoscale Approach to Measuring Wettability......Page 43
2.4 On the Nature of Wettability of van der Waals Heterostructures......Page 46
2.5 Summary......Page 51
References......Page 52
3 Wettability of Wood Surfaces with Waterborne Acrylic Lacquer Stains Modulated by DBD Plasma Treatment in Air at Atmospheric Pressure......Page 59
3.1 Introduction......Page 60
3.2.2 Plasma Treatment......Page 61
3.2.3 Contact Angle (CA) Measurements and Surface Free Energy (SFE) Determination......Page 62
3.2.5 Application of Coatings on Sample Surfaces......Page 63
3.2.9 Cross-Cut Test......Page 64
3.3.2 Spreading of Colored Water Droplets on Untreated and Plasma Treated Wood Surfaces......Page 65
3.3.4 Contact Angles of Primer and Topcoat......Page 68
3.3.5 Adhesion Strength Determined by the Pull-Off Test Method......Page 70
3.4 Summary and Conclusions......Page 71
References......Page 72
4.1 Introduction......Page 75
4.2 Apparent Surface Free Energy Determination......Page 76
4.2.3 Equilibrium Contact Angle Approach......Page 77
4.3.1 Materials......Page 78
4.4.1 Surface Topography......Page 79
4.4.2 Contact Angle Measurements......Page 83
4.5 Conclusions......Page 88
References......Page 89
5 Determination of the Surface Free Energy of Solid Surfaces: Can the Best Model be Found......Page 91
5.1.1 Zisman Critical Surface Tension......Page 92
5.1.2 Neumann’s Method......Page 93
5.1.3 van Oss, Chaudhury and Good Approach......Page 95
5.1.4 Chen and Chang Model......Page 98
5.2.1 Statistical Methods......Page 100
5.2.2 Dalal’s Data......Page 103
5.3.1 Fittting of PVC Data......Page 104
5.3.2 Fitting of PMMA Data......Page 106
5.3.3 Assessing Which Model is Best......Page 110
5.4 Summary and Conclusions......Page 113
References......Page 114
6.1 Introduction......Page 117
6.2.1 vOCG Equation......Page 118
6.2.2 Contact Angle Measurements......Page 120
6.3.3 Capillary Rise Method......Page 122
6.3.5 Heat of Immersion Method......Page 123
6.4.1 Heat of Immersion......Page 124
6.4.2 Contact Angles......Page 125
6.4.3 Talc Surface Free Energy and Its Components......Page 128
6.5 Summary and Conclusions......Page 130
References......Page 131
7 Determination of the Surface Free Energy of Skin and the Factors Affecting it by the Contact Angle Method......Page 133
7.1 Introduction......Page 134
7.2 Experimental......Page 136
7.2.3 Preparation of Test Liquids for the Surface Free Energy Analysis of In Vivo and Ex Vivo Skin......Page 138
7.2.4 Determination of SFE of In Vivo and Ex Vivo Skin using the SFECA Method......Page 139
7.2.6 Determination of the Epidermic Hydration State by the SFECA Method......Page 141
7.3 Results and Discussion......Page 143
7.3.1 Determination of the SFE of Ex Vivo Skin by the SFECA Method......Page 144
7.3.1.1 Comparison between Surface Free Energy and Corneometric Data for the In Vivo Skin Hydration State Evaluation......Page 147
7.3.1.2 Determination of the Hydration State of In Vivo Skin......Page 148
7.3.2 Characterization of SFE, DC and PC of In Vivo Skin by the SFECA Method......Page 150
7.3.3 Determination of SFESKIN and Applicability of TVS Skin Test by the SFECA Method......Page 153
7.4 Summary and Conclusions......Page 157
References......Page 159
8 Determination of Surface Tension Components of Aqueous Solutions Using Fomblin HC/25 Perfluoropolyether Liquid Film as a Solid Substrate......Page 163
8.1 Introduction......Page 164
8.2 Materials Used......Page 169
8.4 Determination of Surface Free Energy (SFE)......Page 171
8.4.1 Determination of Surface Free Energy (SFE) of PermaFoam......Page 172
8.4.2 Determination of Surface Tension (ST) of MilliQ Water......Page 173
8.4.3 Determination of Surface Tension (ST) of Aqueous Solutions in DW......Page 176
8.4.3.1 Sodium Chloride Solutions......Page 178
8.4.3.2 Glycerol Solutions......Page 180
8.4.3.3 Sucrose Solutions......Page 181
8.4.3.4 Ternary Sugar Solutions......Page 185
8.5 Analysis of Correlations......Page 188
8.6 Summary and Conclusions......Page 189
List of Abbreviations......Page 192
References......Page 193
9 Enhancing the Wettability of Polybenzimidazole (PBI) to Improve Fuel Cell Performance......Page 197
9.1 Introduction......Page 198
9.2.3 X-Ray Photoelectron Spectroscopy (XPS)......Page 199
9.2.6 Thermal Gravimetric Analysis (TGA)......Page 200
9.3.1.1 XPS Quantitative Analyses and Contact Angle Measurements......Page 201
9.3.1.2 XPS Chemical State Analysis......Page 202
9.3.2 Surface Topography of PBI Treated with O Atoms......Page 203
9.3.3 TGA Analysis of PBI Samples Treated with O Atoms and Doped with H3PO4......Page 204
9.4 Discussion......Page 206
Acknowledgments......Page 207
References......Page 208
10.1.1 Long-Wear Foundation......Page 211
10.1.2 Wetting and Spreading......Page 213
10.2.2 Rheology of Foundation Samples......Page 214
10.2.4 Contact Angle Measurements......Page 215
10.3.1 Rheology of Foundation Samples......Page 216
10.3.2 Surface Roughness......Page 218
10.3.3 Surface Free Energy of Bio Skin Substrate and Foundation Films......Page 221
10.4 Contact Angles of Foundations with Water......Page 225
10.5 Contact Angles of Foundations with Sebum......Page 227
10.6 Effect of Sebum on Color Transfer and Film Integrity......Page 232
10.7 Summary and Prospects......Page 233
References......Page 235
11.1 Introduction......Page 241
11.2 Theoretical Background......Page 242
11.3.3 Surface Free Energy (SFE) Analysis......Page 246
11.3.6 Adhesion Tension Relaxation (ATR)......Page 247
11.4.1 Static Contact Angles and SFE Analysis......Page 248
11.4.3 Dynamic Contact Angle Hysteresis......Page 250
11.4.4 Adhesion Tension Relaxation (ATR)......Page 251
11.4.5 Peel Force......Page 253
11.5 Conclusion......Page 254
References......Page 255
12 The Potential of Surface Nano-Engineering and Superhydrophobic Surfaces in Drag Reduction......Page 257
Greek Letters......Page 258
12.1 Introduction......Page 259
12.2 Parameters Affecting the Slip Length......Page 264
12.3 Slip Length Measurement on Superhydrophobic Surfaces......Page 267
12.4.1 Wettability Parameters......Page 268
12.4.2.1 Turbulent Structure......Page 269
12.5 Effect of Superhydrophobicity on External Flow......Page 270
12.5.2 Bluff Body......Page 271
12.5.3 Superhydrophobic Streamline Body......Page 272
12.5.4 Partial Superhydrophobicity of NACA 0012 Hydrofoil......Page 273
References......Page 276
13 Laser Surface Engineering of Polymeric Materials for Enhanced Mesenchymal Stem Cell Adhesion and Growth......Page 285
13.1 Introduction......Page 286
13.2 Mesenchymal Stem Cells (MSCs)......Page 287
13.3 Poly(ether ether ketone)......Page 291
13.4 Laser Surface Engineering......Page 292
13.4.1 Laser-Induced Surface Patterning......Page 293
13.4.2 Pulsed Laser Deposition of Polymeric Biomaterials......Page 294
13.5 CO2 Laser Surface Engineering of Poly(ether ether ketone)......Page 295
13.5.1 Material Selection and Laser Surface Engineering......Page 296
13.5.2 Surface Roughness, Topography and Wettability Characteristics Analysis......Page 298
13.5.3 Surface Chemical Properties......Page 299
13.5.4 In Vitro Cell Experimentation......Page 300
13.6 Effects of CO2 Laser Surface Engineering on Surface Parameters of Poly(ether ether ketone)......Page 301
13.7 Effects of CO2 Laser Surface Engineering on Mesenchymal Stem Cell Response to Poly(ether ether ketone)......Page 303
13.8 Poly(ether ether ketone) and other Polymers as Bio-Composite Materials......Page 304
References......Page 308
14.1 Introduction......Page 317
14.2 Sustainable ‘Green’ Composites......Page 319
14.3 Sisal Fiber Composites......Page 320
14.4 Fiber/Resin Interface......Page 321
14.4.1 Sisal/Green Resin Interface Strength......Page 323
14.5 Modification of Cellulosic Fibers for Enhancing Fiber/Resin Interfacial Bonding......Page 325
14.6 Summary......Page 329
References......Page 330
Index......Page 337
EULA......Page 346