Advances in Metal Oxides and Their Composites for Emerging Applications

دانلود کتاب Advances in Metal Oxides and Their Composites for Emerging Applications

51000 تومان موجود

کتاب پیشرفت در اکسیدهای فلزات و کامپوزیت های آنها برای کاربردهای نوظهور نسخه زبان اصلی

دانلود کتاب پیشرفت در اکسیدهای فلزات و کامپوزیت های آنها برای کاربردهای نوظهور بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 5


توضیحاتی در مورد کتاب Advances in Metal Oxides and Their Composites for Emerging Applications

نام کتاب : Advances in Metal Oxides and Their Composites for Emerging Applications
عنوان ترجمه شده به فارسی : پیشرفت در اکسیدهای فلزات و کامپوزیت های آنها برای کاربردهای نوظهور
سری : Metal Oxides Series
نویسندگان :
ناشر : Elsevier
سال نشر : 2022
تعداد صفحات : 733
ISBN (شابک) : 9780323857055
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 13 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover
Half Title
Metal Oxides Series
Advances in Metal Oxides and Their Composites for Emerging Applications
Copyright
Contents
List of contributors
Series editor biography
About the editor
Foreword
Preface to the series
Preface
Acknowledgment
Part I : Introduction to metal oxide-based composites
1. Metal oxide engineering
1.1 Human development and metal oxides nexus
1.2 Metal oxide engineering: strategies and significances
1.2.1 Bulk versus nanoscale
1.2.2 Undoped versus doped
1.2.3 Phase diversity
1.2.4 Composite formation
1.2.5 Morphology engineering
1.2.6 Porosity generations
1.2.7 Surface modifications
1.2.8 Thin-film formations
1.3 Application of engineered metal oxides
1.3.1 Energy technologies
1.3.1.1 Solar cells
1.3.1.2 Water splitting
1.3.1.3 Energy storage system
1.3.2 Biomedical application
1.3.2.1 Biosensing studies
1.3.2.2 Cancer treatments
1.3.2.3 Antimicrobial study
1.3.3 Catalytic applications
1.3.3.1 Wastewater treatment
1.3.3.2 Catalytic organic transformations
1.4 Concluding remarks
1.5 Futuristic outlooks
References
2. Metal oxide-based composites: synthesis and characterization
2.1 Introduction
2.1.1 Metal oxides
2.2 Synthetic approaches
2.2.1 Top-down approaches
2.2.1.1 Mechanical milling
2.2.1.2 Electrospinning
2.2.1.3 Lithography
2.2.1.4 Sputtering
2.2.1.5 Laser ablation
2.2.2 Bottom-up approaches
2.2.2.1 Sol-gel technique
2.2.2.2 Solvothermal technique
2.2.2.3 Microwave synthesis
2.2.2.4 Combustion synthesis
2.2.2.5 Electrodeposition
2.3 Characterization of metal oxide-based composite nanostructures
2.3.1 X-ray Diffraction
2.3.2 Scanning electron microscopy
2.3.3 Transmission electron microscopy
2.3.4 UV Vis spectroscopy
2.3.5 Fourier transform infrared spectroscopy
2.3.6 Temperature-programmed reduction
2.3.7 X-ray photoelectron spectroscopy
2.3.8 Electrochemical characterization
2.4 Summary and outlook
References
Part II : Metal oxides-based composites in energy technologies
3. Metal oxides as photoanodes for photoelectrochemical water splitting: synergy of oxygen vacancy
3.1 Introduction
3.2 Role of metal oxides in photoelectrochemical hydrogen/oxygen evolution
3.3 Oxygen vacancy engineering in metal oxides for photoelectrochemical water splitting
3.3.1 TiO2
3.3.2 WO3
3.3.2.1 ZnO
3.3.2.2 In2O3
3.3.2.3 SrTiO3
3.4 Scope of improvement in the field
3.4.1 Quality and cost-effective materials
3.4.1.1 Stability of metal oxides
3.5 Conclusion
References
4. Transition metal oxide conducting polymer nanocomposites and metal-organic framework-based composites for supercapacitor application
4.1 Introduction
4.2 Energy storage device evolution
4.2.1 Supercapacitor evolution
4.3 Market scenario
4.3.1 Market size
4.3.2 Companies with supercapacitor production
4.3.3 Global supercapacitor market end-users
4.4 Types of supercapacitors
4.4.1 Electric double layer capacitor
4.4.2 Pseudocapacitor
4.4.2.1 Conducting polymers-based supercapacitors
4.4.2.2 Metal oxides-based supercapacitors
4.4.3 Hybrid supercapacitors
4.4.3.1 Asymmetric supercapacitor
4.4.3.2 Rechargeable battery type supercapacitor
4.4.3.3 Composite hybrid supercapacitors
4.5 Electrical properties studies of energy storage devices
4.5.1 Operating voltage
4.5.2 Self-discharge
4.5.3 Polarity
4.5.4 Internal resistance
4.5.5 Dependency of device capacitance and resistance on operating voltage and temperature
4.5.6 Current load and cycle stability
4.5.6.1 Swelling induced degradation
4.5.6.2 Overoxidation induced degradation
4.5.7 Energy density
4.5.8 Power density
4.5.9 Capacitance
4.6 Metal oxide-conducting polymer composites for supercapacitor
4.6.1 Composite of polyaniline with the representative metal oxides
4.6.2 Composite of polypyyrole with the representative metal oxides
4.6.3 Composite of poly 3,4-ethylene dioxythiophene and polythiophene with the reprentative metal oxides
4.7 Metal oxide-metal-organic frameworks and metal organic frameworks derived material for supercapacitor
4.8 Conclusions and future outlooks
References
5. Metal oxide-based nanocomposites for supercapacitive applications
5.1 Introduction
5.2 Charge storage mechanism
5.2.1 Non-faradic mechanism
5.2.2 Redox mechanism
5.2.2.1 Redox reactions at the surface
5.2.2.2 Intercalation type reactions inside the pores of electrode material
5.2.3 Battery type charge storage
5.3 Carbon-based materials as an electrode
5.4 Metal oxides/metal oxide composites as an electrode in supercapacitors
5.4.1 Ruthenium oxide
5.4.2 Manganese dioxide
5.4.3 Nickel oxide
5.4.4 Cobalt tetraoxide
5.4.5 Other metal oxide/metal oxide composites
5.4.6 Performance of negative electrode
5.5 Mixed transition metal oxides
5.5.1 Nickel cobaltate (NiCo2O4)
5.5.2 Ferrites
5.6 Flexible supercapacitors
5.7 Futuristic scope
5.8 Conclusions
References
6. Nanostructured WO3-x based advanced supercapacitors for sustainable energy applications
6.1 Introduction
6.2 Crystallographic characteristics of WO3
6.2.1 Role of ion intercalation in WO3 and electrochemical charge storage
6.3 Designing nanostructured WO3 for supercapacitor application
6.4 Recent developments in WO3 composites for supercapacitor application
6.5 Conclusions
6.6 Future prospects
References
7. Metal oxide nanomaterials for organic photovoltaic applications
7.1 Introduction
7.2 Organic photovoltaic: principle, designing and mechanism
7.2.1 Mechanism
7.2.1.1 Absorption of light and exciton generation
7.2.1.2 Exciton diffusion
7.2.1.3 Exciton dissociation
7.2.1.4 Types of organic photovoltaics
7.2.2 Commonly used organic sensitizers in organic photovoltaics
7.3 Metal oxide nanomaterials
7.4 Properties of nanomaterials
7.5 Representative metal oxides used in organic photovoltaics
7.6 Metal oxides based organic photovoltaic studies
7.6.1 Photovoltaic devices applications of nanomaterials
7.6.1.1 Organic photovoltaics
7.6.2 Titanium dioxide
7.6.3 Zinc oxide
7.6.4 Molybdenum oxide
7.6.5 Tin oxide
7.6.6 Tungsten oxide
7.6.7 Vanadium pentaoxide
7.7 Concluding summary and future prospective
References
8. Nanocrystalline metal oxide-based hybrids for third-generation solar cell technologies
8.1 Introduction
8.2 Modifications of metal oxides
8.2.1 Doped MxOy
8.2.2 Metal-supported MxOy
8.2.3 Metal oxide metal oxide hybrids (MxOy AmOn)
8.2.4 Other additives or Supportive materials
8.2.4.1 Graphene metal oxide hybrids
8.2.4.2 Carbon nanotube 2 metal oxide nanocomposites
8.2.4.3 Polymer 2 metal oxide hybrids
8.2.4.4 Chalcogenides 2 metal oxide hybrids
8.3 Emerging strategies of third-generation solar cell technologies
8.3.1 Dye-sensitized solar cells
8.3.2 Quantum dot-sensitized solar cells
8.3.3 Organic solar cells
8.3.4 Tandem solar cells
8.3.5 Perovskite solar cells
8.4 Present state of art in emerging photovoltaic devices
8.5 Conclusion and future outlooks
References
9. Role of metal oxides as photoelectrodes in dye-sensitized solar cells
9.1 Introduction
9.2 The operational principle of dye-sensitized photo electrochemical cells
9.3 Photo-physics of dye-sensitized photo electrochemical cells
9.3.1 Energy levels of components
9.3.2 Charge separation
9.3.3 Recombination rate
9.3.4 Charge transfer rate
9.4 Metal oxide photoanode in dye-sensitized photo electrochemical cell
9.4.1 Influence of morphology in performance
9.4.1.1 Nanorods/wires/tubes metal oxide
9.4.1.2 Carbon-based metal oxide nanostructure
9.4.1.3 Hierarchical hollow spheres and beads
9.4.1.4 Nanospindles
9.4.2 Influence of interfacial engineering
9.4.2.1 Influence of the compact blocking layer
9.4.2.2 Influence of light-scattering layer
9.5 Metal oxide cathode in dye-sensitized photo electrochemical cells
9.5.1 Role of metal oxide cathode in dye-sensitized photo electrochemi
9.5.2 Variable to evaluating the catalytic activity of metal oxide ca
9.5.2.1 Active sites
9.5.2.2 Conductivity
9.5.3 Recent progress on metal oxide-based cathode
9.5.3.1 Metal oxide/carbon composites
9.6 Conclusion and perspectives
References
10. Nanostructured inorganic metal oxide/metal organic framework based electrodes for energy technologies
10.1 Introduction
10.2 Metal oxides for solar energy studies
10.3 Metal organic frameworks for solar energy studies
10.3.1 Metal organic frameworks as sensitizers
10.3.2 Guest@ metal organic frameworks system
10.4 Metal oxides/metal organic frameworks nanocomposite: pros and cons
10.5 Metal oxide/metal organic frameworks: present state of the art
10.6 Electrode designing and its features studies for energy technologies
10.7 Metal oxides/metal organic frameworks nanocomposites for solar energy harvesting
10.7.1 TiO2/ZIF-8
10.7.2 TiO2/Cu-BTC
10.7.3 TiO2/Co-DAPV
10.7.4 ZnO/ZIF-8
10.7.5 TiO2/MIL-125
10.7.6 ZnO/PPF-11
10.8 Metal oxide/metal organic frameworks nanocomposites for water splitting
10.8.1 α-Fe2O3/imidazole-based metal organic frameworks
10.8.2 BiVO4/MIL-101(Fe)
10.8.3 TiO2/MIL-125
10.8.4 ZnO/ZIF-8
10.9 Conclusion and future perspectives
References
Part III : Other applications of metal oxide-based composites
11. Metal oxide nanocomposite-based electrochemical biosensing studies
11.1 Introduction
11.2 Present scenario of biosensor market
11.3 Nonenzymatic electrochemical biosensors
11.4 Functional nanocomposites in electrochemical biosensor
11.4.1 Metallic nanoparticle-based composites
11.4.2 Metal oxide nanomaterial’s-based composites
11.5 Conclusions
11.6 Challenges and future perspectives
References
12. Functionalized magnetic iron oxide-based composites as adsorbents for the removal of heavy metals from wastewater
12.1 Introduction
12.2 Water pollution by heavy metals and its removal
12.2.1 Methods for the removal of heavy metal ions
12.2.2 Adsorption process for the removal of heavy metal ions
12.3 Magnetic nanoparticles as nanoadsorbents
12.3.1 Functionalization of magnetic nanoparticles for heavy metal ions
12.3.1.1 Surface functionalization by organic materials
12.3.1.2 Surface functionalization by inorganic materials
12.4 Batch adsorption experiment
12.4.1 Factors affecting the adsorption of heavy metal ions
12.4.1.1 Effect of solution pH
12.4.1.2 Effect of contact time
12.4.1.3 Effect of adsorbent dose
12.4.1.4 Effect of initial metal ion concentration
12.4.2 Adsorption kinetics
12.4.3 Adsorption isotherms
12.5 Removal of heavy metal ions by magnetic nanoparticles
12.5.1 Removal of a single type of heavy metal ions
12.5.2 Simultaneous removal of multiple heavy metal ions
12.6 Conclusions and future perspectives
References
13. Mixed metal oxide nanocomposites for environmental remediation
13.1 Introduction: environmental remediation principles and applications
13.2 Types of environmental remediation
13.2.1 Soil remediation
13.2.2 Groundwater and surface water remediation
13.2.3 Sediment remediation
13.3 Semiconducting metal oxides
13.4 Environmental remediation: need of the hour
13.5 Different composites in metal oxide
13.6 Mixed metal oxide NCS and environmental remediation: present state of the art
13.6.1 TiO2-based nanocomposites
13.6.2 Fe2O3-based nanocomposites
13.6.3 ZnO-based nanocomposites
13.6.4 Al2O3-based nanocomposites
13.6.5 WO3-based nanocomposites
13.6.6 SnO2-based nanocomposites
13.6.7 Graphene oxide-based nanocomposites
13.6.8 Rare earth oxides-based nanocomposites
13.7 Advanced oxidation processes or degradation processes
13.8 Synthesis of metal oxide nanocomposites
13.9 Tailoring properties of metal oxide nanocomposites
13.9.1 Doping
13.9.2 Modeling phase structure
13.9.3 Stoichiometry controlling
13.9.4 Microstructure forming
13.9.5 Heterostructure forming
13.9.6 Controlling crystal growth
13.9.7 Impact of heat treatments
13.10 Protocols of mixed metal oxides used in environmental remediation
13.10.1 Adsorbent studies
13.10.2 Catalytic studies
13.10.3 Membrane studies
13.10.4 Biological studies
13.11 Monitoring of pollutants during environmental remediation
13.11.1 Monitoring of air pollutants
13.11.2 Monitoring of soil pollutants
13.11.3 Monitoring of water pollutants
13.12 Concluding remarks and future perspectives
References
14. Metal oxide nanocomposites in water and wastewater treatment
14.1 Water: the key to life on the earth
14.2 Present scenario of water pollution
14.3 Water treatment
14.4 Waste water treatment
14.5 Challenges
14.6 Nanotechnology in water and wastewater treatment
14.6.1 Nanosorbents
14.6.2 Nanocatalysts
14.6.3 Nanostructured membrane
14.6.4 Nanobiocides
14.7 Use of metal-oxide nanocomposites in water and wastewater treatment
14.8 Features of metal oxide nanocomposite in water/ wastewater treatment
14.9 Future prospects
14.10 Conclusions
References
15. Self-cleaning photoactive metal oxide-based concrete surfaces for environmental remediation
15.1 Introduction
15.2 Photocatalytic mechanism of self-cleaning concretes
15.3 Preparation of photoactive concrete surface
15.3.1 Method (i)
15.3.2 Method (ii)
15.3.3 Method (iii)
15.4 Properties of photoactive self-cleaning concretes
15.5 Photocatalytic activity testing methods
15.5.1 Self-cleaning test
15.5.2 Depollution testing
15.6 Advantages and disadvantages of self-cleaning concretes
15.7 Self-cleaning photoactive concrete in real-world applications
15.8 Market status of photoactive materials
15.9 Summary and conclusions
15.10 Future prospects
References
Further reading
16. Metal oxide nanocomposites: design and use in antimicrobial coatings
16.1 Introduction
16.2 Microbes and microbial infectious diseases
16.3 Antimicrobial coatings: market scenario
16.4 Metal oxide nanocomposites as potential antimicrobial agents
16.4.1 Composites of metal oxide with inorganic moieties
16.4.1.1 Metal/metal oxide composites
16.4.1.2 Metal oxide/metal oxide (mixed metal oxide) composites
16.4.1.3 Metal oxide/carbon nanostructures composites
16.4.2 Composites of metal oxide with organic moieties
16.4.2.1 Metal oxide/metal-organic framework composites
16.4.2.2 Metal oxide/polymer composites
16.4.2.3 Metal oxide/organic molecule composites
16.5 Plausible mechanisms for nanocomposites-based microbes inactivation
16.6 Synthesis strategies for designing metal oxide nanocomposite
16.7 Metal oxide nanocomposites based on antimicrobial coatings in different fields
16.7.1 Hospital sector
16.7.2 Textile sector
16.7.3 Food sector
16.7.4 Polymer sector
16.7.5 Paint sector
16.7.6 Leather sector
16.8 Conclusions
16.9 Future outlooks
Acknowledgment
References
17. Metal oxide composites in organic transformations
17.1 Introduction
17.2 Design and characterization of nanocomposites
17.3 Applications of metal oxide composites for organic transformations
17.3.1 Synthesis of bis (pyrazol-5-ol) and dihydropyrano[2,3-c] pyrazole analogs
17.3.2 Synthesis of pyrimido benzazoles
17.3.3 Synthesis of pyridine-3-carboxamides
17.3.4 Synthesis of benzimidazolo[2,3-b]quinazolinone derivatives
17.3.5 Synthesis of dihydroquinazolinones
17.3.6 Synthesis of 4H-pyrimido[2,1-b]benzothiazoles and benzoxanthenones
17.3.7 Synthesis of chromene derivatives
17.3.7.1 Synthesis of aminochromenes
17.3.7.2 Synthesis of 2-amino-benzochromenes
17.3.7.3 Synthesis of pyrano[3,2- c]quinolones and pyrano[3,2-c] chromen
17.3.7.4 Synthesis of novel 4H-chromene-3-carbonitriles
17.3.8 Synthesis of 1,4-disubstituted-1,2,3-triazoles
17.3.9 Synthesis of pyran derivatives
17.3.10 Synthesis of thieno[2,3-d]pyrimidin-4(3H)-one Derivative
17.3.11 Synthesis of α-chloro aryl ketones
17.3.12 C H arylation reactions through aniline activation
17.3.13 Synthesis of unsymmetrical ureas
17.3.14 Synthesis of Betti bases and bisamides
17.3.15 Synthesis of 3-aryl-2-[(aryl)(arylamino)]methyl-4H-furo [3,2-c]chromen-4-one derivatives
17.3.16 Synthesis of benzo[4,5]thiazolo[3,2-a]chromeno [4,3-d] pyrimidin-6-one derivatives
17.3.17 Synthesis of substituted pyrazolones
17.3.18 Synthesis of 7-aryl-benzo[h]tetrazolo[5,1-b]quinazoline- 5,6-dione
17.3.19 Reduction of nitrobenzene and p-nitrophenol
17.4 Concluding remarks
References
18. Metal oxide-based composites as photocatalysts
18.1 Introduction
18.1.1 Principles of metal oxide-based composites as photocatalysts
18.1.2 Mechanism of photocatalytic reactions
18.2 Unitary metal oxides versus composite-based metal oxide photocatalysts
18.3 Applications of metal oxide-based photocatalysts
18.3.1 Photoelectrocatalysis for energy conversion
18.3.2 Hydrogen production
18.3.3 Water treatment and environment
18.3.4 CO2 reduction (hydrocarbon generation)
18.3.5 Antibacterial, anticancer, and biomedical applications
18.3.6 Layered double hydroxides/metal-organic frameworks
18.3.7 Polymeric nanophotocatalysts
18.3.8 Food safety
18.4 Future perspectives of metal oxide-based composites as photocataly
References
19. Metal oxide-based composites for magnetic hyperthermia applications
19.1 Introduction
19.2 Present cancer treatment: pros and cons
19.3 Hyperthermia
19.3.1 Classification of hyperthermia
19.3.1.1 Local hyperthermia
19.3.1.2 Regional hyperthermia
19.3.1.3 Whole-body hyperthermia
19.3.2 Magnetic hyperthermia
19.4 Representative nanomaterials for magnetic hyperthermia
19.5 Magnetic metal oxide nanomaterials-based composites for magnetic hyperthermia application
19.6 Iron oxide nanoparticles and surface functionalization
19.7 Methods for measuring the magnetism of the magnetic materials
19.7.1 Superconducting quantum interference device magnetometry
19.7.2 Zero-field cooling and field cooling measurements
19.7.3 Vibrating-sample magnetometer
19.7.4 Heating capacity: induction heating system
19.8 Conclusions
19.9 Challenges and future perspectives
References
Index
Cover back




پست ها تصادفی