Advances in Quantum Systems in Chemistry, Physics, and Biology: Selected Proceedings of QSCP-XXIII (Kruger Park, South Africa, September 2018) (Progress in Theoretical Chemistry and Physics, 32)

دانلود کتاب Advances in Quantum Systems in Chemistry, Physics, and Biology: Selected Proceedings of QSCP-XXIII (Kruger Park, South Africa, September 2018) (Progress in Theoretical Chemistry and Physics, 32)

32000 تومان موجود

کتاب پیشرفت در سیستم های کوانتومی در شیمی، فیزیک و زیست شناسی: مجموعه مقالات منتخب QSCP-XXIII (Kruger Park، آفریقای جنوبی، سپتامبر 2018) (پیشرفت در شیمی نظری و فیزیک، 32) نسخه زبان اصلی

دانلود کتاب پیشرفت در سیستم های کوانتومی در شیمی، فیزیک و زیست شناسی: مجموعه مقالات منتخب QSCP-XXIII (Kruger Park، آفریقای جنوبی، سپتامبر 2018) (پیشرفت در شیمی نظری و فیزیک، 32) بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 11


توضیحاتی در مورد کتاب Advances in Quantum Systems in Chemistry, Physics, and Biology: Selected Proceedings of QSCP-XXIII (Kruger Park, South Africa, September 2018) (Progress in Theoretical Chemistry and Physics, 32)

نام کتاب : Advances in Quantum Systems in Chemistry, Physics, and Biology: Selected Proceedings of QSCP-XXIII (Kruger Park, South Africa, September 2018) (Progress in Theoretical Chemistry and Physics, 32)
عنوان ترجمه شده به فارسی : پیشرفت در سیستم های کوانتومی در شیمی، فیزیک و زیست شناسی: مجموعه مقالات منتخب QSCP-XXIII (Kruger Park، آفریقای جنوبی، سپتامبر 2018) (پیشرفت در شیمی نظری و فیزیک، 32)
سری :
نویسندگان : , , ,
ناشر : Springer
سال نشر :
تعداد صفحات : 472
ISBN (شابک) : 9783030349400 , 3030349403
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 11 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


PTCP Aim and Scope\n Progress in Theoretical Chemistry and Physics\n Aim and Scope\nPreface\nObituary: Gerardo Delgado-Barrio (1946–2018)\nContents\nExotic Atomic Systems\nAdvanced Relativistic Energy Approach in Spectroscopy of Autoionization States of Multielectron Atomic Systems\n 1 Introduction\n 2 Relativistic Energy Approach to Calculation of Autoionization Decay Processes in Multielectron Atoms\n 2.1 An Energy Approach. General Remarks\n 2.2 Radiative Decay in an Energy Approach and the Optimized One-Electron Representation\n 2.3 Autoionization Resonances in Spectrum of Relativistic Multi-electron Atom: Theory\n 3 Spectroscopy of Autoionization States of Complex Atomic Systems: Illustrative Theoretical Results\n 3.1 Autoionization Resonances in Spectrum of Helium\n 3.2 Some Autoionization States in Spectrum of Barium\n 4 Conclusions\n References\nRelativistic Quantum Chemistry and Spectroscopy of Kaonic Atomic Systems with Accounting for Radiative and Strong Interaction Effects\n 1 Introduction\n 2 Relativistic Theory of Kaonic Atoms with Accounting for Nuclear, Radiative and Strong Interaction Effects\n 2.1 Electromagnetic Interactions and Quantum Electrodynamics Effects in Kaonic Atoms\n 2.2 Strong Interactions in Kaonic Atomic System\n 3 Some Results and Conclusions\n References\nSpectroscopy of Rydberg Atomic Systems in a Black-Body Radiation Field\n 1 Introduction\n 2 Theoretical Method\n 3 Results and Conclusions\n References\nHyperfine and Electroweak Interactions in Heavy Finite Fermi Systems and Parity Non-conservation Effect\n 1 Introduction\n 2 Relativistic Nuclear-RMBPT Formalism in Theory of Heavy Finite Fermi Systems\n 3 Results and Conclusions\n References\nClusters and Molecules Interactions\nQuantum Study of Helium Clusters Doped with Electronically Excited Li, Na, K and Rb Atoms\n 1 Introduction\n 2 Classical Analysis\n 2.1 The Dimer Potential Energy Curves\n 2.2 Larger Clusters\n 3 Dynamical Results\n 3.1 Method\n 3.2 Energetics\n 3.3 Densities\n 4 Conclusions\n References\nA Quantum Chemical Approach for the Characterization of the  Interaction Potential of Propylene Oxide with Rare-Gas Atoms (He, Ne, Ar)\n 1 Introduction\n 2 Background\n 2.1 Geometry Optimization and Calculation of Potential Energy Profile of the Leading Configurations\n 2.2 Symmetry Adapted Perturbation Theory Calculations\n 3 Results and Discussion\n 4 Final Remarks\n References\nA Theoretical Study of the Preferred Reaction Mechanism Between Chloroacetic Acid and Thiourea\n 1 Introduction\n 2 Computational Details\n 3 Results and Discussions\n 3.1 NHCSHNH2 + ClCH2COOH Reaction Mechanism in Vacuo\n 3.2 NHCSHNH2 + ClCH2COOH Reaction Mechanism in Water Solution\n 3.3 NH2CSNH2 + ClCH2COOH Reaction Mechanism in Vacuo\n 3.4 NH2CSNH2 + ClCH2COOH Reaction Mechanism in Water Solution\n 4 Conclusions\n References\nDensity Functional Theory Studies of  Ruthenium Dye (N3) Adsorbed on a TiO2 Brookite Cluster for Application in Dye Sensitized Solar Cells\n 1 Introduction\n 2 Computational Procedures\n 3 Results and Discussions\n 3.1 Geometric Properties of the Ruthenium (N3) Complex\n 3.2 UV/VIS Absorption Spectrum of the Calculated Ruthenium (N3) Complex\n 3.3 Adsorption of Ruthenium (N3) Complex Dye on Brookite TiO2 Nanocluster\n 3.4 Adsorption Energies of Ruthenium (N3) Dye Molecule Absorbed on (TiO2)n, n = 8, 68 Brookite Complex\n 4 Conclusions\n References\nBiochemistry and Biophysics\nComplexes of Furonewguinone B with a Cu2+ Ion. A DFT Study\n 1 Introduction\n 2 Computational Details\n 3 Results\n 3.1 Naming of Conformers and Complexes\n 3.2 Conformational Preferences and Hydrogen Bonding of the Uncomplexed Molecule. Results in Vacuo\n 3.3 Complexes of Furonewguinone B with a Cu2+ Ion. Results in Vacuo\n 3.4 Results in Solution\n 4 Discussion and Conclusions\n References\nComputational Study of  Shuangancistrotectorine A: A Naphthylisoquinoline Alkaloid with Antimalarial Activity\n 1 Introduction\n 2 Computational Details\n 3 Results\n 3.1 Naming of Conformers\n 3.2 Results in Vacuo\n 3.3 Results in Solution\n 3.4 Comparison with Previously Studied Dimeric Naphthylisoquinoline Alkaloids\n 4 Discussion and Conclusions\n References\nAb Initio and DFT Computational Study of Myristinin A and a Structurally Related Molecule\n 1 Introduction\n 2 Computational Details\n 3 Calculations and Results\n 3.1 Naming of Conformers\n 3.2 Preliminary Study of a Model Structure\n 3.3 Results for the MYRA and DBPO Molecules in Vacuo\n 3.4 Results in Solution\n 3.5 Comparison of the Results Obtained for the Considered Molecular Structures\n 4 Discussion and Conclusions\n References\nCurrent Problems in Computer Simulation of Variability of  Three-Dimensional Structure of DNA\n 1 Introduction. Complexity and Simplicity of the Most Important Molecule of Life\n 2 Model Systems and Computational Methods\n 3 Sources of Variability in the DNA 3D-Structure\n 3.1 Flexibility of the Sugar-Phosphate Backbone\n 3.2 Multiplicity of Feasible Base-Base Complexes\n 4 Regularities in the 3D Structures of BI and BII Conformational Families. Capabilities and Limitations of Computational Methods\n 5 Computational Problems with Elementary Units of ‘Non-canonical’ Families of DNA\n 6 Conclusions\n References\nFundamental Theory\nEfficient “Middle” Thermostat Scheme for the Quantum/Classical Canonical Ensemble via Molecular Dynamics\n 1 Introduction\n 2 “Middle” scheme\n 2.1 Typical thermostats\n 2.2 Simulation results\n 3 Path integral molecular dynamics\n 3.1 Thermodynamic properties\n 3.2 Staging Path Integral Molecular Dynamics\n 3.3 Normal-mode Path Integral Molecular Dynamics\n 3.4 Multi-electronic-state PIMD\n 4 “Middle” scheme with constraints\n 4.1 Holonomic constraint\n 4.2 Isokinetic constraints in the “middle” scheme\n 5 Conclusions\n References\nMegascopic Quantum Phenomena\n 1 Introduction\n 2 The Clamped-Nuclei Paradox\n 3 The Paradox of Time Irreversibility\n 4 Bohm’s Five Prophetic Statements\n 5 The Paradox of Schrödinger’s Cat\n 6 What Is the Copenhagen Interpretation?\n 7 The Paradox of Quantum Decoherence\n 8 The Paradox of Free Will\n 9 The Paradox of the Meissner Effect\n 10 The Paradox of Higgs’ Boson\n 11 The Paradox of the Centre of Mass of Quantum Systems\n 12 The Paradox of Spontaneous Symmetry Breaking\n 13 The Paradox of Bohr’s Complementarity\n 14 The Second Quantum Floor\n 15 Matter-Mind Dualism\n 16 The Emerald Tablet\n 17 Conclusion\n References\nAbiogenesis and the Second Law of Thermodynamics\n 1 Introduction\n 2 Sub-dynamics and Quantum Theory\n 3 Biology and Quantum Theory\n 4 Technology and Quantum Theory\n 5 Evolution and Quantum Theory\n 6 Life and Quantum Theory\n 7 Consciousness and Quantum Theory\n 8 The Universe and Quantum Theory\n 9 Black Holes and Quantum Theory\n 10 Conclusion\n References\nCan Quantum Theory Concepts Shed Light on Biological Evolution Processes?\n 1 Introduction\n 2 A Short Survey of Theories of Biological Evolution\n 3 Differential and Integral Formulations in Physical Sciences\n 3.1 From Lagrange’s Equations to Hamilton’s Principle\n 3.2 From Snell-Descartes’ Laws to Fermat’s Principle\n 3.3 The Interpretation of Fermat’s and Hamilton’s Principles in Terms of Constructive Wave Interferences\n 4 Searching for Stationary Variables in Biological Evolution\n 4.1 Main Steps of Biological Evolution\n 4.2 Hints and Criteria for a Biological Extremum Principle from Concepts of Former Evolution Theories\n 4.3 Looking for an Extremum Principle for Biological Evolution from the Quantum Properties of Living Systems\n 5 Discussion and Conclusion\n References\nIndex




پست ها تصادفی