Adversarial Machine Learning

دانلود کتاب Adversarial Machine Learning

55000 تومان موجود

کتاب یادگیری ماشین متخاصم نسخه زبان اصلی

دانلود کتاب یادگیری ماشین متخاصم بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 2


توضیحاتی در مورد کتاب Adversarial Machine Learning

نام کتاب : Adversarial Machine Learning
ویرایش : 1
عنوان ترجمه شده به فارسی : یادگیری ماشین متخاصم
سری : Synthesis Lectures on Artificial Intelligence and Machine Learning
نویسندگان : ,
ناشر : Springer
سال نشر : 2018
تعداد صفحات : 161
ISBN (شابک) : 3031004523 , 9783031004520
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 4 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover
Copyright Page
Title Page
Contents
List of Figures
Preface
Acknowledgments
Introduction
Machine Learning Preliminaries
Supervised Learning
Regression Learning
Classification Learning
PAC Learnability
Supervised Learning in Adversarial Settings
Unsupervised Learning
Clustering
Principal Component Analysis
Matrix Completion
Unsupervised Learning in Adversarial Settings
Reinforcement Learning
Reinforcement Learning in Adversarial Settings
Bibliographic Notes
Categories of Attacks on Machine Learning
Attack Timing
Information Available to the Attacker
Attacker Goals
Bibliographic Notes
Attacks at Decision Time
Examples of Evasion Attacks on Machine Learning Models
Attacks on Anomaly Detection: Polymorphic Blending
Attacks on PDF Malware Classifiers
Modeling Decision-Time Attacks
White-Box Decision-Time Attacks
Attacks on Binary Classifiers: Adversarial Classifier Evasion
Decision-Time Attacks on Multiclass Classifiers
Decision-Time Attacks on Anomaly Detectors
Decision-Time Attacks on Clustering Models
Decision-Time Attacks on Regression Models
Decision-Time Attacks on Reinforcement Learning
Black-Box Decision-Time Attacks
A Taxonomy of Black-Box Attacks
Modeling Attacker Information Acquisition
Attacking Using an Approximate Model
Bibliographical Notes
Defending Against Decision-Time Attacks
Hardening Supervised Learning against Decision-Time Attacks
Optimal Evasion-Robust Classification
Optimal Evasion-Robust Sparse SVM
Evasion-Robust SVM against Free-Range Attacks
Evasion-Robust SVM against Restrained Attacks
Evasion-Robust Classification on Unrestricted Feature Spaces
Robustness to Adversarially Missing Features
Approximately Hardening Classifiers against Decision-Time Attacks
Relaxation Approaches
General-Purpose Defense: Iterative Retraining
Evasion-Robustness through Feature-Level Protection
Decision Randomization
Model
Optimal Randomized Operational Use of Classification
Evasion-Robust Regression
Bibliographic Notes
Data Poisoning Attacks
Modeling Poisoning Attacks
Poisoning Attacks on Binary Classification
Label-Flipping Attacks
Poison Insertion Attack on Kernel SVM
Poisoning Attacks for Unsupervised Learning
Poisoning Attacks on Clustering
Poisoning Attacks on Anomaly Detection
Poisoning Attack on Matrix Completion
Attack Model
Attacking Alternating Minimization
Attacking Nuclear Norm Minimization
Mimicking Normal User Behaviors
A General Framework for Poisoning Attacks
Black-Box Poisoning Attacks
Bibliographic Notes
Defending Against Data Poisoning
Robust Learning through Data Sub-Sampling
Robust Learning through Outlier Removal
Robust Learning through Trimmed Optimization
Robust Matrix Factorization
Noise-Free Subspace Recovery
Dealing with Noise
Efficient Robust Subspace Recovery
An Efficient Algorithm for Trimmed Optimization Problems
Bibliographic Notes
Attacking and Defending Deep Learning
Neural Network Models
Attacks on Deep Neural Networks: Adversarial Examples
l_2-Norm Attacks
l_-Norm Attacks
l_0-Norm Attacks
Attacks in the Physical World
Black-Box Attacks
Making Deep Learning Robust to Adversarial Examples
Robust Optimization
Retraining
Distillation
Bibliographic Notes
The Road Ahead
Beyond Robust Optimization
Incomplete Information
Confidence in Predictions
Randomization
Multiple Learners
Models and Validation
Bibliography
Authors\' Biographies
Index




پست ها تصادفی