توضیحاتی در مورد کتاب ANALOG-TO-DIGITAL CONVERSION
نام کتاب : ANALOG-TO-DIGITAL CONVERSION
ویرایش : 4 ed.
عنوان ترجمه شده به فارسی : تبدیل آنالوگ به دیجیتال
سری :
نویسندگان : MARCEL JM PELGROM
ناشر : SPRINGER NATURE
سال نشر : 2021
تعداد صفحات : [1032]
ISBN (شابک) : 9783030908089 , 3030908089
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 36 Mb
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Preface to the Fourth Edition
Preface to the Third Edition
Preface to the Second Edition
Preface to the First Edition
Acknowledgments
Contents
About the Author
List of Symbols
Reference Tables and Figures
1 Introduction
References
2 Mathematics
2.1 Algebra and Trigonometry
2.1.1 Derivatives and Integrals
2.1.2 Taylor series
2.1.3 Fourier Transform
2.1.4 Fourier Series
2.1.5 Linearity and Distortion
2.1.6 Laplace Transform
2.1.7 z-Transform
2.2 Statistics
2.2.1 Basic Statistical Operations
2.2.2 Poisson and Gauss Distributions
2.2.3 Practical Estimation
2.2.4 Correlation
2.2.5 Functions of Statistical Variables
Exercises
References
3 Electrical Theory
3.1 Resistivity
3.1.1 Power and Temperature
3.1.2 Voltage and Temperature Coefficient
3.1.3 Measuring Resistance
3.1.4 Electromigration
3.1.5 Thermal Noise
3.1.6 1/f Noise
3.1.7 Shot Noise
3.2 Maxwell Equations
3.2.1 Inductors
3.2.2 Energy in a Coil
3.2.3 Straight-Wire Inductance
3.2.4 Skin Effect and Eddy Current
3.2.5 Transformer
3.2.6 Capacitors
3.2.7 Energy in a Capacitor
3.2.8 Coaxial Cable
3.3 Network Theory
3.3.1 Kirchhoff's Laws, Thevenin, Norton, and Superposition
3.3.2 Energy and Power
3.3.3 Digital Power Consumption and Partial Charging
3.3.4 Two-Port Networks
3.3.5 Feedback
3.3.6 Bode Plot
3.3.7 Time Constant and Bandwidth
3.3.8 Filters
3.3.9 RLC Filters
3.3.10 Sallen–Key and gm-C Filters
3.3.11 Gyrator
Exercises
References
4 Semiconductors
4.1 Semiconductor Materials
4.1.1 Bandgap and Boltzmann
4.1.2 Semiconductor Resistivity
4.1.3 Mott–Gurney Law
4.1.4 Temperature and Voltage Coefficients
4.1.5 Matching of Resistors
4.2 PN-Junction
4.2.1 Current in a Diode
4.2.2 Temperature Behavior
4.2.3 Linearization of Diodes
4.2.4 Diode-Based Circuits
4.3 Bipolar Junction Transistor
4.3.1 Concentrations in a Bipolar Transistor
4.3.2 Bipolar Circuits
4.3.3 Darlington Pair
4.4 MOS Capacitor
4.4.1 Gate Capacitance
4.4.2 Capacitors Between Layers
4.4.3 Voltage and Temperature Coefficient
4.4.4 Matching of Capacitors
4.5 The MOS Transistor
4.5.1 Different Operating Regimes
4.5.2 MOS Transistor Current
4.5.3 Threshold Voltage
4.5.4 Weak-Inversion Current
4.5.5 Large Signal and Small Signal
4.5.6 Drain Voltage Modulation
4.5.7 Output Impedance
4.5.8 Matching of MOS Transistors
4.5.9 High-Frequency Behavior
4.5.10 Leakage
4.5.11 Temperature Coefficient
4.5.12 Noise in MOS Transistors
4.5.13 Noise Cancellation
4.5.14 Latch-up
4.5.15 Enhancement and Depletion Transistors
4.5.16 Advanced Device Architectures
4.5.17 MOS Models
Exercises
References
5 Electronic Circuits
5.1 Basic Circuits
5.1.1 Classification of Amplifiers
5.1.2 One-Transistor Amplifier
5.1.3 Inverter and Latch
5.1.4 Source Follower
5.1.5 Differential Pair
5.1.6 Differential Difference Pair
5.1.7 Degeneration
5.1.8 Mixers and Variable Gain Amplifiers
5.1.9 Current Mirror
5.1.10 Cascode Variants
5.1.11 Gain Boosting
5.2 Operational Amplifiers
5.2.1 Single-Stage Amplifier
5.2.2 Folded Cascode Amplifier
5.2.3 Miller Operational Amplifier
5.2.4 Choosing the W/L Ratios in a Miller Opamp
5.2.5 Dominant Pole Amplifier
5.2.6 Feedback in Electronic Circuits
5.2.7 Biasing Circuits
5.2.8 Opamps and OTAs
5.2.9 Switched-Capacitor Circuits
5.2.10 Differential Design
5.3 Oscillators
5.3.1 LC Oscillators
5.3.2 Quartz Oscillators
5.3.3 RC Oscillators
5.3.4 Phase-Locked Loop
5.3.5 Oscillators: Phase Noise
5.3.6 Jitter
Exercises
References
6 Accuracy: Deterministic and Random Errors
6.1 Design by Ratio
6.2 Variability
6.3 Deterministic Electrical Offsets
6.3.1 Equal Dimensions
6.3.2 Offset Caused by Electrical Differences
6.3.3 Capacitors
6.3.4 Resistors
6.3.5 Linear Gradient
6.3.6 Temperature Gradients
6.4 Technology and Accuracy
6.4.1 Lithography
6.4.2 Proximity Effects
6.4.3 Implantation Effects
6.4.4 Offset Caused by Stress
6.4.5 Issues with Wiring
6.4.6 Offset Mitigation
6.5 Random Matching
6.5.1 Random Fluctuations in Devices
6.5.2 Poisson and Gauss
6.5.3 MOS Threshold Mismatch
6.5.4 Current Factor Mismatch
6.5.5 Current Mismatch in Strong and Weak Inversion
6.5.6 Mismatch for Various Processes
6.5.7 Application to Other Components
6.5.8 Advanced Device Architectures
6.5.9 Modeling Remarks
6.6 Design Consequences
6.6.1 Analog Design
6.6.2 Digital Design
6.6.3 Drift
6.6.4 Limits of Power and Accuracy
Exercises
References
7 Sampling
7.1 Sampling in Time and Frequency
7.1.1 Dirac Sequence
7.1.2 Sampling Signals
7.1.3 Sampling Limit: Nyquist Criterion
7.2 Sampling Aspects
7.2.1 Down-Sampling
7.2.2 Subsampling and Decimation
7.2.3 Alias Filter
7.2.4 Alias Removal After Digital-to-AnalogConversion
7.2.5 Getting Around Nyquist?
7.2.6 Fourier Uncertainty
7.3 Modulation and Chopping
7.3.1 Modulation
7.3.2 Chopping
7.4 Reconstruction of Sampled Data
7.5 Noise
7.5.1 Sampled Noise
7.5.2 Differential Noise
7.6 Jitter
7.6.1 Jitter of the Sampling Pulse
7.6.2 Driving a Sampling Pulse
7.6.3 Optical Sampling
7.7 Time-Discrete Filtering
7.7.1 Finite Impulse Response Filters
7.7.2 Half-Band Filters
7.7.3 IIR Filters
Exercises
References
8 Sample-and-Hold Circuits
8.1 Track-and-Hold and Sample-and-Hold Circuits
8.2 Artifacts in T&H Circuits
8.2.1 Pedestal Step
8.2.2 Droop
8.2.3 Hold-Mode Feed-Through
8.3 Capacitor and Switch Implementations
8.3.1 Capacitor
8.3.2 Switch Impedance
8.3.3 Complementary Switch
8.3.4 High Voltages
8.3.5 Bootstrap Techniques
8.3.6 Threshold Modulation
8.3.7 Bottom-Plate Sampling
8.4 T&H Circuit Topologies
8.4.1 Driving a T&H Configuration
8.4.2 Buffering the Hold Capacitor
8.4.3 Switched-Capacitor T&H Circuits
8.4.4 Flip-Around T&H Circuit
8.4.5 Offset and Noise in Flip-Around Circuits
8.4.6 Differential Flip-Around Architecture
8.4.7 MDAC: Amplifying T&H Circuit
8.4.8 T&H with a Level-Shifting Opamp
8.4.9 Correlated Double Sampling
8.4.10 Bipolar T&H Circuit
8.4.11 Distortion and Noise
Exercises
References
9 Quantization
9.1 Resolution
9.2 Quantization Error
9.2.1 1-Bit Quantization
9.2.2 2-6 Bit Quantization
9.2.3 7-Bit and Higher Quantization
9.3 Signal-to-Quantization Error Ratio
9.3.1 SNQR Definition
9.3.2 Related Definitions
9.3.3 Nyquist Rate and Oversampled Architectures
9.4 Linearity
9.4.1 Integral Non-Linearity (INL)
9.4.2 Differential Non-Linearity (DNL)
9.5 Modeling INL and DNL
9.5.1 From INL to Distortion
9.5.2 DNL and Quantization
9.5.3 Non-uniform Quantization
9.5.4 Dither
9.6 Figure-of-Merit
9.6.1 Figure-of-Merit: Schreier
9.6.2 Figure-of-Merit: Walden
9.6.3 Figure-of-Merit: Digital-to-Analog Converters
9.6.4 Figure-of-Merit: Risks
Exercises
References
10 Reference Circuits
10.1 General Requirements
10.2 Bandgap Voltage Reference Circuits
10.2.1 Principle
10.2.2 Bipolar Devices in CMOS
10.2.3 Standard CMOS Bandgap Circuit
10.2.4 Artifacts: Start-Up
10.2.5 Artifacts: Bandwidth
10.2.6 Artifacts: Mismatch and Noise
10.3 Bandgap Reference Circuits
10.3.1 Bandgap Circuits in Bipolar Technology
10.3.2 Current-Mode Bandgap Circuit
10.3.3 Low-Voltage Bandgap Circuits
10.3.4 Second Order Compensation
10.4 Alternative References
10.4.1 Weak Inversion
10.4.2 DTMOST Reference Circuit
10.4.3 Other Technological Options
Exercises
References
11 Digital-to-Analog Conversion
11.1 Representations
11.1.1 Digital Codes
11.1.2 Unary Representation
11.1.3 Unary: INL and DNL
11.1.4 Binary Representation
11.1.5 Binary: INL and DNL
11.1.6 Segmentation
11.1.7 Segmented: INL and DNL
11.2 Voltage-Domain Digital-to-Analog Conversion
11.2.1 Resistor Ladders
11.2.2 Resistor Ladder: Dynamic Behavior
11.2.3 Practical Issues in Resistor Ladders
11.2.4 Accuracy in Resistors Ladders
11.2.5 R-2R Ladders
11.2.6 Accuracy in R-2R Ladders
11.2.7 A Video Resistor Ladder Digital-to-AnalogConverter
11.3 Current-Domain Digital-to-Analog Conversion
11.3.1 Buffered Current-Domain Digital-to-Analog Converters
11.3.2 Current-Steering Digital-to-Analog Conversion
11.3.3 Matrix Decoding
11.3.4 INL and DNL
11.3.5 Current Cell
11.3.6 Switching the Current Cells
11.3.7 Calibration of Current Sources
11.3.8 Sorting and Selecting
11.3.9 Performance Limits
11.3.10 Semi-Digital Filters
11.4 Charge-Domain Digital-to-Analog Conversion
11.4.1 Switched-Capacitor Digital-to-Analog Conversion
11.4.2 Charge-Redistribution Converters
11.4.3 RF Digital-to-Analog Converters
11.4.4 Bridge Capacitor
11.5 Algorithmic Digital-to-Analog Conversion
11.5.1 Conversion by Passive Redistribution
11.5.2 Diophantine Digital-to-Analog Conversion
11.6 Time-Domain Digital-to-Analog Conversion
11.6.1 1-Bit Digital-to-Analog Converter
11.6.2 Time-Domain Signals
11.6.3 Jitter in the Time Domain
11.6.4 Class-D Amplifiers
Exercises
References
12 Comparators
12.1 Comparator Classification
12.1.1 Limiting Amplifier
12.1.2 Hysteresis Comparator
12.1.3 Resistive Pre-amplification
12.1.4 Integrating Pre-amplification
12.1.5 Floating Inverter
12.1.6 Regenerative Comparator
12.1.7 Latch
12.2 Comparator Issues
12.2.1 Metastability and Bit Error Rate
12.2.2 Accuracy
12.2.3 Kick-Back
12.2.4 Hysteresis
12.3 Comparator Examples
12.3.1 Comparators: Amplifier Based
12.3.2 StrongARM Comparators
12.3.3 Double-Tail Comparator
12.3.4 Calibrated Comparators
12.3.5 T&H Plus Comparator
Exercises
References
13 Flash Analog-to-Digital Conversion
13.1 Classification of Analog-to-Digital Converters
13.2 Traditional Flash Converters
13.2.1 Ladder Implementation
13.2.2 Comparator Random Mismatch
13.2.3 Comparator Yield Loss
13.2.4 Decoder
13.3 Advanced Schemes
13.3.1 Averaging
13.3.2 Interpolation
13.3.3 Frequency Dependent Mismatch
13.3.4 Time Interpolation
13.3.5 Folding Converter
13.3.6 Mismatch Dominated Converter
13.3.7 Technology Scaling for Flash Converters
13.3.8 Digital Output Power
13.4 Power, Bandwidth, and Resolution
Exercises
References
14 Subranging and Two-Step Analog-to-Digital Conversion
14.1 Subranging Architecture
14.1.1 Overrange
14.1.2 Monkey-Switching
14.2 Two-Step Architecture
14.2.1 Overrange in Two-Step Architectures
Exercises
References
15 Pipeline Analog-to-Digital Conversion
15.1 1-Bit Pipeline Converters
15.1.1 Multiplying Digital-to-Analog Converter (MDAC)
15.1.2 MDAC Implementation
15.1.3 Error Sources in Pipeline Converters
15.1.4 Multiply-by-Two Errors
15.1.5 Bandwidth and Settling
15.1.6 Noise
15.1.7 Reduced Radix Converters with Calibration
15.2 1.5-Bit Pipeline Analog-to-Digital Converter
15.2.1 Redundancy
15.2.2 Design of an MDAC Stage
15.2.3 Multi-Bit MDAC Stage
15.3 Pipeline Variations
15.3.1 Opamp Sharing
15.3.2 Sample-and-Hold-Less Conversion
15.3.3 Decoupled Capacitors
15.3.4 Continuous-Time Front-End
15.3.5 Other Forms of MDAC Amplification
15.4 Algorithmic Converters
15.5 Power, Bandwidth, and Resolution
Exercises
References
16 Successive Approximation Conversion
16.1 The Algorithm
16.2 Charge-Redistribution Conversion
16.2.1 Basic Operation
16.2.2 Parasitic Capacitor
16.2.3 Top-Plate or Bottom-Plate Input
16.2.4 Bridge Capacitor
16.2.5 Digital Controller
16.3 Artifacts and Mitigations
16.3.1 Speed, Noise, and Kick-Back
16.3.2 Accuracy and Calibration
16.3.3 Redundancy for Comparator Errors
16.3.4 Sub-Radix-2 Base
16.3.5 Energy
16.4 Alternative Successive Approximation Converters
16.4.1 Two-Step Architectures with SAR
16.4.2 Passive Charge Division
16.4.3 Multi-Bit Comparison
16.4.4 Noise-Shaping SAR
16.4.5 Mismatch-Error Shaping
16.4.6 Resistive Successive Approximation Converter
16.4.7 Power, Bandwidth, and Resolution
Exercises
References
17 Linear and Time-Based Conversion
17.1 Linear Approximation Converters
17.1.1 Counting Converter
17.1.2 Tracking Converter
17.2 Time-Related Conversion
17.2.1 Wilkinson Converter
17.2.2 Dual-Slope Converter
17.2.3 Pulse-Width Modulation Converter
17.3 Voltage-to-Time Conversion
17.3.1 Voltage-to-Frequency Conversion
17.3.2 Time-to-Digital Conversion
17.3.3 Vernier/Nonius Principle
17.4 Other Conversion Proposals
17.4.1 Level-Crossing Analog-to-Digital Conversion
17.4.2 Asynchronous Successive ApproximationConversion
17.4.3 Floating-Point Converter
References
18 Time-Interleaving
18.1 The Need for Time Interleaving
18.1.1 Time-Domain Interleaving
18.1.2 Frequency-Domain View
18.2 Input Sampling
18.2.1 1 Buffer
18.2.2 Input Driver
18.2.3 Signal Distribution
18.2.4 Track-and-Hold Implementations
18.3 Time-Interleaving Errors
18.3.1 Random DC-Offsets Between Channels
18.3.2 Random Gain Differences Between Channels
18.3.3 Input Sampling Errors
18.3.4 Bandwidth Differences
18.3.5 Reconstruction Errors
18.4 Time-Interleaving Architectures
18.4.1 2 Interleaving
18.4.2 3,4 Interleaving
18.4.3 8 Interleaving
18.4.4 Two-Stage Interleaving
18.5 Frequency Multiplexing
18.6 Power, Bandwidth, and Resolution
Exercises
References
19 Time-Discrete Modulation
19.1 Oversampling
19.1.1 Oversampling in Analog-to-Digital Conversion
19.1.2 Oversampling in Digital-to-Analog Conversion
19.2 Noise Shaping
19.2.1 Higher Order Noise Shaping
19.3 Modulation
19.3.1 A Quantizer in a Feedback Loop
19.3.2 Linearization
19.4 Time-Discrete Modulation
19.4.1 First Order Modulator
19.4.2 Second Order Modulator
19.4.3 Cascade of Integrators
19.4.4 Input Feed-Forward Modulator
19.4.5 Circuit Design Considerations
19.4.6 Overload
19.4.7 Decimation
19.5 Higher Order Time-Discrete Converters
19.5.1 Cascaded Modulator
19.5.2 0-L MASH
19.6 Digital-to-Analog Conversion
19.6.1 Single-Loop Conversion
19.6.2 Cascaded Digital-to-Analog Conversion
Exercises
References
20 Time-Continuous Modulation
20.1 First and Second Order Modulator
20.1.1 Linearized Model
20.1.2 Higher Order Converters
20.1.3 Digital-to-Analog Converter in the Loop
20.1.4 Excess Loop Delay in Time-Continuous Conversion
20.1.5 Meta-Stability
20.1.6 Latency
20.1.7 Filter Implementations
20.2 Time-Discrete and Time-Continuous Conversion
20.3 Multi-Bit Conversion
20.4 Various Forms of Modulation
20.4.1 First Order Modulator with Choppingand Dither
20.4.2 Complex Modulation
20.4.3 Asynchronous Modulation
20.4.4 Bandpass Converter
20.4.5 Loop with Noise-Shaping
20.4.6 Incremental Converter
20.5 Power, Bandwidth, and Resolution
Exercises
References
21 Mitigation of Errors
21.1 Strategies
21.2 Removing the Error
21.2.1 Auto-Zero Mechanism
21.2.2 Calibration
21.2.3 Split Converters
21.3 Moving the Error
21.3.1 Dithering
21.3.2 Chopping
21.3.3 Dynamic Element Matching (D.E.M.)
21.3.4 Data-Weighted Averaging (D.W.A.)
Exercises
References
22 Characterization and Measurement
22.1 Test Hardware
22.2 Measurement Methods
22.2.1 INL and DNL
22.2.2 Harmonic Behavior and Coherent Testing
22.2.3 Windowing
22.3 Special Measurements
22.3.1 Noise
22.3.2 Bit Error Rate
22.3.3 Multi-Tone Power Ratio
22.3.4 Differential Gain and Differential Phase
22.3.5 Self-Testing
22.4 How to Solve a Problem?
Exercises
References
Index