توضیحاتی در مورد کتاب Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines
نام کتاب : Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines
ویرایش : 1 ed.
عنوان ترجمه شده به فارسی : هوش مصنوعی و بهینه سازی داده محور موتورهای احتراق داخلی
سری :
نویسندگان : Jihad Badra (editor), Pinaki Pal (editor), Yuanjiang Pei (editor), Sibendu Som (editor)
ناشر : Elsevier
سال نشر : 2022
تعداد صفحات : 260
[259]
ISBN (شابک) : 0323884571 , 9780323884570
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 14 Mb
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
بهینه سازی هوش مصنوعی و داده محور موتورهای احتراق داخلی تحولات اخیر در هوش مصنوعی (AI)/یادگیری ماشین (ML) و تکنیک های بهینه سازی و کالیبراسیون مبتنی بر داده برای موتورهای احتراق داخلی را خلاصه می کند. این کتاب AI/ML و روشهای مبتنی بر داده را برای بهینهسازی فرمولهای سوخت و سیستمهای احتراق موتور، پیشبینی تغییرات چرخه به چرخه، و بهینهسازی سیستمهای پس از تصفیه و کالیبراسیون موتور تجربی را پوشش میدهد. این شامل تمام جزئیات آخرین تکنیک های بهینه سازی به همراه کاربرد آنها در ICE است که آن را برای مهندسان خودرو، مهندسان مکانیک، OEM ها و R ایده آل می کند.
فهرست مطالب :
c4e4c6d9_Cover
Copyrig_2022_Artificial-Intelligence-and-Data-Driven-Optimization-of-Interna
Copyright
Contents
Contribut_2022_Artificial-Intelligence-and-Data-Driven-Optimization-of-Inter
Contributors
Forewor_2022_Artificial-Intelligence-and-Data-Driven-Optimization-of-Interna
Foreword
Prefac_2022_Artificial-Intelligence-and-Data-Driven-Optimization-of-Internal
Preface
Chapter-1---Intr_2022_Artificial-Intelligence-and-Data-Driven-Optimization-o
1 . Introduction
1. Industrial revolution
2. Artificial intelligence, machine learning, and deep learning
3. Machine learning algorithms
4. Artificial intelligence-based fuel-engine co-optimization
4.1 Optimization of internal combustion engine
4.1.1 Design of experiments
4.1.2 Genetic algorithm
4.1.3 Machine learning-based algorithms
4.2 Optimization of fuel formulation
4.3 Mitigation of rare combustion events
5. Summary
References
Chapter-2---Optimization-of-fuel-formu_2022_Artificial-Intelligence-and-Data
2 . Optimization of fuel formulation using adaptive learning and artificial intelligence
1. Introduction and motivation
2. Mixed-mode combustion and fuel performance metrics
3. A neural network model to predict fuel research octane numbers
4. Optimization problem formulation and description of solution approaches
4.1 Constrained optimization formulation
4.2 Genetic algorithm
4.3 Gaussian process–based surrogate model optimization algorithm
5. Numerical experiments and results
6. Discussion
7. Summary and concluding remarks
Acknowledgments
References
Chapter-3---Artificial-intel_2022_Artificial-Intelligence-and-Data-Driven-Op
3 . Artificial intelligence–enabled fuel design
1. Transportation fuels
1.1 Fuel representation
1.2 Fuel formulation workflow
1.3 Artificial intelligence modeling approaches
2. Application of artificial intelligence to fuel formulation
2.1 High throughput screening: finding a needle in the haystack
2.2 Fuel property prediction by machine learning models
2.3 Reaction discovery
2.4 Fuel-engine co-optimization
3. Conclusions and perspectives
Acknowledgments
References
Chapter-4---Engine-optimization-using_2022_Artificial-Intelligence-and-Data-
4 . Engine optimization using computational fluid dynamics and genetic algorithms
1. Introduction
2. Modeling framework and acceleration strategies
2.1 Computational fluid dynamics acceleration techniques
2.1.1 Adaptive mesh refinement
2.1.2 Detailed chemistry acceleration strategies
2.2 Engine geometry generation
2.2.1 Method of splines
2.2.2 Method of forces
2.3 Virtual injection model
3. Optimization methods
3.1 Fundamentals of genetic algorithms
3.2 Pioneering investigations
3.3 Multiobjective framework
3.4 Convergence acceleration
4. Summary and concluding remarks
References
Chapter-5---Computational-fluid-dynamics-g_2022_Artificial-Intelligence-and-
5 . Computational fluid dynamics–guided engine combustion system design optimization using design of experiments
1. Introduction
2. Methodologies
2.1 Design space construction
2.2 Response surface model formulation
2.3 Model-based design optimization and verification
3. A recent application
3.1 Engine and fuel specifications
3.2 Computational fluid dynamic model setup and validation
3.3 Design variables
3.4 Objective variables and evaluation method
3.5 Data fitting and optimization
4. Recommendations for best practice
4.1 Adequate computational fluid dynamic model validation
4.2 Efficient geometry and mesh manipulation
4.3 Sample size
4.4 Optimization across full engine operation range
4.5 Computational efficiency
5. Conclusions and perspectives
Acknowledgments
References
Chapter-6---A-machine-learning-genetic-al_2022_Artificial-Intelligence-and-D
6 . A machine learning-genetic algorithm approach for rapid optimization of internal combustion engines
1. Introduction
2. Engine optimization problem setup
3. Training and data examination
4. Machine learning-genetic algorithm approach
4.1 Optimization methodology
4.2 Repeatability of machine learning-genetic algorithm
4.2.1 Extension of variable domain
4.3 Postprocessing and robustness
5. Automated machine learning-genetic algorithm
5.1 Hyperparameter selection
5.1.1 Manual selection
5.1.2 Automated strategies for selecting hyperparameters
5.2 Problem setup
5.3 Results
6. Summary
Acknowledgments
References
Chapter-7---Machine-learning-driven-seq_2022_Artificial-Intelligence-and-Dat
7 . Machine learning–driven sequential optimization using dynamic exploration and exploitation
1. Introduction
2. Active ML optimization (ActivO)
2.1 Basic algorithm
2.2 Query strategies
2.3 Convergence criteria
2.4 Dynamic exploration and exploitation
3. Case study 1: two-dimensional cosine mixture function
4. Case study 2: computational fluid dynamics (CFD)-based engine optimization
5. Conclusions
Acknowledgments
References
Chapter-8---Artificial-intelligence-based-_2022_Artificial-Intelligence-and-
8 . Artificial-intelligence-based prediction and control of combustion instabilities in spark-ignition engines
1. Introduction
1.1 Artificial intelligence applications to engine controls
1.2 Dilute combustion instability background
2. Case study: artificial-intelligence-enhanced modeling of dilute spark-ignition cycle-to-cycle variability
3. Case study: neural networks for combustion stability control
3.1 Artificial neural networks
3.2 Spiking neural networks
4. Case study: learning reference governor for model-free dilute limit identification and avoidance
4.1 Constrained combustion phasing control problem
4.2 Learning reference governor for avoiding misfire events
5. Summary
References
Chapter-9---Using-deep-learning-to-di_2022_Artificial-Intelligence-and-Data-
9 . Using deep learning to diagnose preignition in turbocharged spark-ignited engines
1. Introduction
1.1 Fault detection
1.2 Optimization and control
1.3 Predicting combustion parameters (phasing and cycle-to-cycle variation) and emissions
2. Preignition detection using machine learning algorithm
2.1 Feed forward multilayer neural networks
2.2 Convolutional neural networks
2.3 Recurrent neural networks
3. Activation functions
4. Experiments and data extraction
5. Machine learning methodology
6. Model 1: Input from principal component analysis
7. Model 2: Time series input
8. Model metrics
9. Results and discussion
9.1 Training and validation losses
10. Conclusions
References
Further reading
Inde_2022_Artificial-Intelligence-and-Data-Driven-Optimization-of-Internal-C
Index
A
B
C
D
E
F
G
H
I
K
L
M
N
O
P
Q
R
S
T
U
V
Z
توضیحاتی در مورد کتاب به زبان اصلی :
Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines summarizes recent developments in Artificial Intelligence (AI)/Machine Learning (ML) and data driven optimization and calibration techniques for internal combustion engines. The book covers AI/ML and data driven methods to optimize fuel formulations and engine combustion systems, predict cycle to cycle variations, and optimize after-treatment systems and experimental engine calibration. It contains all the details of the latest optimization techniques along with their application to ICE, making it ideal for automotive engineers, mechanical engineers, OEMs and R&D centers involved in engine design.