توضیحاتی در مورد کتاب Artificial Intelligence in Cancer Diagnosis and Prognosis
نام کتاب : Artificial Intelligence in Cancer Diagnosis and Prognosis
عنوان ترجمه شده به فارسی : هوش مصنوعی در تشخیص و پیش آگهی سرطان
سری : IPEM–IOP Series in Physics and Engineering in Medicine and Biology
نویسندگان : Ayman El-Baz, Jasjit S Suri
ناشر : IOP Publishing
سال نشر : 2022
تعداد صفحات : 250
ISBN (شابک) : 9780750335959 , 9780750335942
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 41 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
PRELIMS.pdf
Preface
Acknowledgements
Editor biographies
Ayman El-Baz
Jasjit S Suri
List of contributors
CH001.pdf
Chapter 1 American Joint Committee on Cancer staging of lung and renal cancers using a recurrent deep neural network model
1.1 Introduction
1.2 Background
1.2.1 Lung cancer
1.2.2 Renal cancer
1.2.3 Research scope
1.3 Methodology
1.3.1 AJCC staging
1.3.2 Database
1.3.3 The deep learning model
1.4 The experiment
1.5 Results and discussion
1.6 Conclusions
References
CH002.pdf
Chapter 2 Neural-ensemble-based detection: a modern way to diagnose lung cancer
2.1 Introduction
2.1.1 Lung cancer epidemiology
2.1.2 Signs and symptoms of lung cancer
2.1.3 Staging of lung cancer
2.1.4 Classification of lung cancer
2.2 Different methods of lung cancer detection
2.2.1 Invasive methods
2.2.2 Non-invasive methods
2.3 Neural-ensemble-based detection
2.4 Conclusions
References and further reading
CH003.pdf
Chapter 3 Computed tomography and magnetic resonance imaging machine learning applications for renal cell carcinoma
3.1 Background
3.2 Applications
3.2.1 Malignant versus benign discrimination
3.2.2 Malignancy subtyping
3.2.3 Biologic aggressiveness
3.2.4 Correlation with overall and progression-free survival under treatment
3.2.5 Prediction of perioperative complications
3.3 Conclusions
References
CH004.pdf
Chapter 4 Pulmonary nodule-based feature learning for automated lung tumor grading using convolutional neural networks
4.1 Introduction
4.2 Literature review
4.2.1 Preprocessing
4.2.2 Candidate nodule segmentation
4.2.3 Feature extraction and classification
4.3 Methodology
4.3.1 Data acquisition
4.3.2 Preprocessing
4.3.3 NROI segmentation
4.3.4 GAN
4.3.5 Feature extraction
4.3.6 Classification
4.4 Results and discussion
4.5 Conclusions
References
CH005.pdf
Chapter 5 Detection of lung contours using closed principal curves and machine learning
5.1 Introduction
5.2 Materials and methods
5.2.1 Principal curve
5.2.2 Machine learning
5.2.3 Proposed algorithm
5.2.4 Quantitative evaluation
5.3 Results and discussion
5.3.1 Detecting contours in the private dataset using different learning rates
5.3.2 Detecting contours in the private dataset using different numbers of neurons in the hidden layer
5.3.3 Detecting contours in the private dataset using different numbers of epochs
5.3.4 Detecting contours in the private dataset using different algorithms
5.3.5 Detecting contours in the public LIDC–IDRI dataset using different algorithms
5.4 Conclusions
Acknowledgments
References
CH006.pdf
Chapter 6 Bytes, pixels, and bases: machine learning in imaging–omics for renal cell carcinoma
6.1 Introduction
6.1.1 The convergence of computers and cancer care
6.2 Imaging in renal cell carcinoma
6.2.1 Radiology
6.2.2 Pathology
6.3 Omics in renal cell carcinoma
6.3.1 Multiomics
6.4 Imaging–omics for kidney carcinoma
6.4.1 Radiomics
6.4.2 Pathomics
6.5 Opportunities and obstacles
6.5.1 Data
6.5.2 Interpretability
6.5.3 Privacy
6.5.4 Adversarial attacks
6.5.5 Regulatory roadblocks
6.6 Future directions
6.7 Conclusions
References
CH007.pdf
Chapter 7 Detection, growth quantification, and malignancy prediction of pulmonary nodules using deep convolutional networks in follow-up CT scans
7.1 Introduction
7.2 Background
7.2.1 Nodule detection
7.2.2 Nodule quantification
7.2.3 Lung cancer prediction
7.3 Temporal lung nodule assessment
7.3.1 Preprocessing
7.3.2 Nodule detection
7.3.3 Nodule reidentification
7.3.4 Nodule growth quantification
7.3.5 Nodule malignancy classification
7.4 Data cohort
7.4.1 Scanners and protocols
7.4.2 Data
7.5 Results
7.5.1 Nodule detection
7.5.2 Nodule reidentification
7.5.3 Nodule growth quantification
7.5.4 Nodule malignancy classification
7.6 Discussion
7.7 Conclusions
References and further reading
CH008.pdf
Chapter 8 Training a deep multiview model using small samples of medical data
8.1 Introduction
8.2 Related work
8.2.1 Cox proportional hazard model
8.2.2 Deep survival models
8.3 Methodology
8.3.1 Training the deep multiview model on small numbers of data samples
8.3.2 Training the network using a divide-and-conquer strategy
8.3.3 Training the model as a multitask model (MM)
8.4 Experiments and discussion
8.4.1 Data set descriptions
8.4.2 Data preprocessing
8.4.3 Experimental setup
8.4.4 Results
8.4.5 Discussion
8.5 Conclusions
References
CH009.pdf
Chapter 9 Overview of deep learning for lung cancer diagnosis
9.1 Introduction
9.2 Deep learning
9.2.1 Convolutional neural networks
9.2.2 Transfer learning models
9.2.3 The U-Net
9.3 Evaluation criteria
9.3.1 Evaluation metrics used in classification applications
9.3.2 Evaluation metrics used in segmentation applications
9.4 Datasets
9.4.1 The LIDC–IDRI data set
9.4.2 The LungCT-Diagnosis data set
9.4.3 The NSCLC-Radiomics data set
9.5 Overview of recent research
9.6 Discussion
9.7 Conclusions
References
CH010.pdf
Chapter 10 Artificial intelligence for cancer diagnosis
10.1 Introduction
10.2 Background of cancer
10.3 The basics of artificial intelligence
10.4 AI impacts on cancer-based clinical analysis
10.5 Visualization tools for AI-assisted cancer recognition systems
10.6 Multi-platform deployment for cancer prognosis systems
10.7 Case studies of cancer recognition systems that use artificial intelligence techniques
10.8 Conclusions
References and further reading
CH011.pdf
Chapter 11 Lung cancer diagnosis using 3D-CNN and spherical harmonics expansions
11.1 Introduction
11.2 Methodology
11.2.1 Feature extraction utilizing convolutional neural networks
11.2.2 Explanation of feature extraction utilizing spherical harmonics
11.3 Results
11.3.1 Experimental setup
11.3.2 Experimental evaluation
11.4 Conclusions
References