Artificial Intelligence in Radiation Oncology

دانلود کتاب Artificial Intelligence in Radiation Oncology

43000 تومان موجود

کتاب هوش مصنوعی در پرتو انکولوژی نسخه زبان اصلی

دانلود کتاب هوش مصنوعی در پرتو انکولوژی بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 2


توضیحاتی در مورد کتاب Artificial Intelligence in Radiation Oncology

نام کتاب : Artificial Intelligence in Radiation Oncology
عنوان ترجمه شده به فارسی : هوش مصنوعی در پرتو انکولوژی
سری :
نویسندگان : ,
ناشر : World Scientific Publishing
سال نشر : 2023
تعداد صفحات : 392 [393]
ISBN (شابک) : 9811263531 , 9789811263538
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 30 Mb



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.

توضیحاتی در مورد کتاب :


استفاده بالینی از هوش مصنوعی (AI) در تشعشع سرطان شناسی در مراحل ابتدایی خود است. با این حال، مسلم است که هوش مصنوعی می‌تواند انکولوژی تشعشع را دقیق‌تر و شخصی‌تر کند و نتایج بهتری داشته باشد. تشعشع انکولوژی مجموعه‌ای از فناوری‌های پیشرفته را برای تصویربرداری، درمان، برنامه‌ریزی، شبیه‌سازی، هدف‌گیری و تضمین کیفیت به کار می‌گیرد و در عین حال حجم عظیمی از داده‌ها را شامل درمانگران، دوزیمتریست‌ها، فیزیکدانان، پرستاران، تکنسین‌ها و مدیران مدیریت می‌کند. هوش مصنوعی شامل بسیاری از ابزارهای قدرتمند است که می تواند حجم عظیمی از داده های مرتبط را پردازش کند تا دقت، بهره وری و اتوماسیون را در عملیات پیچیده ای مانند سرطان شناسی تشعشع بهبود بخشد. این کتاب مجموعه ای از مفاهیم علمی هوش مصنوعی و ابزارهای فناوری هوش مصنوعی را با نمونه های انتخاب شده ارائه می دهد. از برنامه های فعلی برای خدمت به عنوان یک منبع هوش مصنوعی یک مرحله ای برای جامعه انکولوژی پرتو. پذیرش بالینی، فراتر از تحقیقات، نیازمند ملاحظات اخلاقی و چارچوبی برای ارزیابی کلی هوش مصنوعی به عنوان مجموعه ای از ابزارهای قدرتمند است. 30 متخصص مشهور در شانزده فصل سازماندهی شده در شش بخش مشارکت داشتند: تعریف آینده، استراتژی، ابزارهای هوش مصنوعی، کاربردهای هوش مصنوعی. ، و ارزیابی و نتایج. آینده از دیدگاه بالینی و فنی تعریف می‌شود و استراتژی درس‌های آموخته شده از تجربه رادیولوژی در هوش مصنوعی و نقش داده‌های دسترسی باز برای افزایش عملکرد ابزارهای هوش مصنوعی را مورد بحث قرار می‌دهد. ابزارهای هوش مصنوعی شامل رادیومیک، تقسیم بندی، بازنمایی دانش و پردازش زبان طبیعی است. برنامه‌های کاربردی هوش مصنوعی، برنامه‌ریزی و اتوماسیون درمان مبتنی بر دانش، برنامه‌ریزی درمان مبتنی بر هوش مصنوعی، پیش‌بینی سمیت رادیوتراپی، رادیومیک در پیش‌بینی سرطان و پاسخ درمانی، و استفاده از هوش مصنوعی برای کاهش انتشار خطا را مورد بحث قرار می‌دهند. بخش ششم دو موضوع مهم در پذیرش بالینی را توضیح می دهد: مسائل اخلاقی و ارزیابی هوش مصنوعی به عنوان یک فناوری تحول آفرین.

فهرست مطالب :


Contents Preface List of Contributors Part 1 Define the Future Chapter 1 Clinical Radiation Oncology in 2040: Vision for Future Radiation Oncology from the Clinical Perspective 1. The Diagnosis 2. In 2040, AI will Facilitate Anticipatory Predictions to Improve Early Detection 3. In 2040, AI-based Approaches will Improve Consistency and Accessibility of High Quality Pathology Interpretation, and Provide Prognostic and Predictive Functionality with Greater Randomized Supporting Data 4. In 2040, Advanced Statistical Approaches will Drive or Provide Critical Characteristics in Staging 5. In 2040, AI will Provide Improved Decision Support to Improve Appropriate Personalized Treatment, and Drive Targeted Areas in Patient-Centered Goals of Care 6. In 2040, Algorithmic Tools Built into EHR Systems will Ease the Process of Record Review, Ordering, and Documentation 6.1. Radiotherapy planning 7. In the Year 2040, AI-Assisted Segmentation and Treatment Planning will be Commonplace and Improve the Quality and Accessibility of Radiotherapy Plans, with Particular Impacts on Access to Care and Active Replanning 7.1. Clinical management 8. In 2040, AI will Enable the Use of Multiple Sources of Data to Help Physicians Better Manage Patient Quality of Life References Chapter 2 A Vision for Radiation Oncology in 2030 1. Introduction 1.1. The growing cancer burden 1.2. The growing data challenge 2. A Vision for the Future 2.1. Automation 2.2. Augmentation 2.3. Amplification 3. The Radiation Oncology AI Toolkit 3.1. Training and learning paradigms 3.2. Toolkit selection 4. The Trajectory of AI Tools into 2030 5. Summary References Part 2 Strategy Chapter 3 Lessons from Artificial Intelligence Applications in Radiology for Radiation Oncology 1. Evolution of the Artificial Intelligence Ecosystem 1.1. Expectations and disappointments of AI 1.2. Technical ecosystem helping research and development in AI 2. Different Types of Machine Learning Tools 3. Digital Transformation of Radiology and Computer-Aided Diagnosis (CAD) 3.1. Computer-aided diagnosis 3.2. Technical lesson learned from radiology AI 3.2.1. Limitations of CNNs 3.2.2. Data quality and pre-processing 3.2.3. Data volume and data mix 3.2.4. Expert labeling and curation 3.3. Lessons from poor clinical adoption of AI tools in radiology 4. Comparing Radiology and Radiation Oncology 5. Quantitative Imaging; For New Insights 6. Productivity Improvement and Workflow Optimization 7. Integration of AI Tools into Workflow and New Intelligence Management System (IMS) 8. Ten Principles for Good Machine Learning Practice 9. Conclusion Acknowledgments References Chapter 4 Open Access Data to Enable AI Applications in Radiation Therapy 1. Introduction 2. AI in Radiation Therapy and Cancer Imaging 3. Open Access Data Repositories 4. Distributed ML Without Data Sharing 5. Acquisition, Curation, and Quality 6. Annotations and Labeled Data 7. Remaining Challenges 8. Conclusions References Part 3 AI Tools Chapter 5 Science and Tools of Radiomics for Radiation Oncology 1. Radiomics Definition and History 2. Input Data and Preprocessing 3. Segmentation 4. Radiomic Feature Extraction and Standardization 5. Software Tools for Radiomic Feature Extraction 6. Feature Selection and Dimensionality Reduction 7. Radiomic Analyses 8. Conclusions References Chapter 6 Proposed Title: Artificial Intelligence for Image Segmentation in Radiation Oncology 1. Importance of Segmentation in Radiation Oncology 2. Review of Deep Learning Technologies in Medical Image Segmentation 2.1. Fully Convolution Network (FCN) 2.2. U-Net 2.3. Generative Adversarial Network (GAN) 3. Evaluation of Auto-segmentation Performance 4. Challenges in Adopting AI Segmentation in Clinical Practice 4.1. Generalization error 4.2. Variation in contouring standard 5. Summary References Chapter 7 Knowledge Representation for Radiation Oncology 1. Introduction 2. Knowledge Representation 3. Unified Medical Language System and Constituents 4. UMLS Limitations 5. KR Outside UMLS 6. Medical NLP Backed by KR 7. Applications of Knowledge Representation 8. Machine Learning Backed by KR 9. ANNs, Knowledge Representation, and Explainability 10. The Future of KR in Medicine 11. Conclusion References Chapter 8 Natural Language Processing for Radiation Oncology 1. Introduction 2. What Is NLP? 2.1. The history of NLP 2.2. NLP definitions 2.3. NLP transformation and representation methods 3. NLP in Medicine 3.1. The linguistic string project 3.2. The realtime outbreak and disease surveillance system 3.3. Predicting patient outcomes 3.4. Monitoring adverse drug events 3.5. Processing medical literature for clinician use 3.6. Design and implementation of clinical trials 3.7. Future applications/directions 4. NLP in Oncology 4.1. Radiographic surveillance and diagnosis 4.2. Detailed pathological, molecular, and genomic features 4.3. Identifying patient cohorts from EMR 4.4. Identifying cancer stage from EMR 4.5. Risk assessment 4.6. Clinical outcomes 4.7. Identifying social determinants of care and identifying healthcare gaps 4.8. Summary 5. NLP in Radiation Oncology 5.1. Big data analysis 5.2. Understanding complex radiation histories 5.3. Overcoming non-standardized nomenclature 5.4. Improving documentation and communication of radiation histories 5.5. Treatment-related toxicity 5.6. Real-time management 6. Conclusion References Part 4 AI Applications Chapter 9 Knowledge-Based Treatment Planning: An Efficient and Reliable Planning Technique towards Treatment Planning Automation 1. Introduction 2. Knowledge-Based Treatment Planning (KBP) 2.1. Library-based approach 2.2. Overlap Volume Histogram (OVH) 2.3. Correlation between OVH and DVH 2.4. Selection of DVH values as the optimization objectives for a new patient 3. Applications of KBP 3.1. KBP in head and neck cancer 3.2. KBP in prostate cancer 3.3. KBP in lung, breast and GI cancers 3.4. Cross-institutional application of KBP 3.5. Multi-modality application of KBP 4. Summary References Chapter 10 Artificial Intelligence in Radiation Therapy Treatment Planning 1. Introduction 2. Radiation Therapy Treatment Planning Workflow and Automation 2.1. Automated Rule Implementation and Reasoning (ARIR) 2.2. Knowledge-based Planning (KBP) for Dose Volume Histogram (DVH) prediction 2.3. Multicriteria Optimization (MCO) 2.4. Voxel dose prediction and hard-AI 3. AI Approaches in Radiation Therapy Treatment Planning 3.1. Manual Feature Extraction in Dose Volume Histogram (DVH)-based Knowledge-based Planning (KBP) 3.2. Automatic feature extraction: Convolutional Neural Network (CNN) 3.3. Generative Adversarial Neural network (GAN) 3.4. Reinforcement Learning (RL): Optimize machine parameters 4. Other AI Methods and Considerations Acknowledgment References Chapter 11 Clinical Application of AI for Radiation Therapy Treatment Planning 1. Introduction 2. Problem Definition, Scope, and Data Curation 3. Technical Validation 4. Clinical Validation 5. Clinician Trust, AI Explainability, and Bias 6. Special Considerations for AI Treatment Planning Implementation 7. Quality Assurance, Re-Training, and Maintenance 8. Summary References Chapter 12 Using AI to Predict Radiotherapy Toxicity Risk Based on Patient Germline Genotyping 1. Introduction 2. Machine Learning Approaches to GWAS 2.1. Statistical analysis approaches 2.1.1. Multiple hypothesis correction 2.1.2. Population structure correction 2.1.3. Genotype imputation 2.1.4. Fine mapping 2.2. Machine learning approaches 2.2.1. Selecting genomic features as inputs to model building 2.2.2. Validating machine learning models 2.2.3. Methods for developing prediction signatures from GWAS 2.2.3.1. Support vector machines 2.2.3.2. Penalized logistic regression 2.2.3.3. Random forest models 2.2.3.4. Deep learning 2.2.3.5. Network analysis 2.3. A hybrid method of machine learning and statistical analysis 2.4. Integration of dose-volume and genetic factors into NTCP models 3. The Identification of Biological Correlates Associated with Toxicity: A Key Advantage of Machine Learning Signatures in GWAS 4. Conclusion Acknowledgments References Chapter 13 Utilization of Radiomics in Prognostication and Treatment Response 1. Radiomics as an Adjunct to Prognosis 2. Prediction of Treatment Response 3. Tracking Treatment Response 4. Radiomics as a Surrogate for Pathologic Information 5. Artificial Intelligence in the Development of Clinically Focused Radiomics Signatures 6. Conclusions and Future Directions References Chapter 14 How AI can Help us Understand and Mitigate Error Propagation in Radiation Oncology 1. Introduction 2. Patient Safety in Radiation Oncology 3. The Radiation Oncology Workflow: Constructing a Reference Timeline 4. Creating a Prototype Statistical Model 5. Understanding Error Reporting Data in Our System:Past and Present 6. Understanding Error Reporting Data: What’s in the Future? 7. Envisioning an AI-powered Error Mitigation System 8. The Challenges and Pitfalls of AI 9. Conclusion References Part 5 Assessment and Outcomes Chapter 15 Ethics and Artificial Intelligence in Radiation Oncology 1. Ethical Principles in Medicine 1.1. Respect for autonomy 1.2. Beneficence and nonmaleficence 1.3. Justice 2. Ethical Concerns for AI in Medicine and Radiation Oncology 2.1. Inconclusive evidence 2.2. Inscrutable evidence 2.3. Misguided evidence 2.4. Unfair outcomes 2.5. Transformative effects 2.6. Traceability 3. Emerging AI Tools in Radiation Oncology 3.1. Adoption of AI tools with potential biases 3.2. AI in radiation oncology and global health 4. Ethics and the Future of AI in Radiation Oncology Acknowledgments References Chapter 16 Evaluation of Artificial Intelligence in Radiation Oncology 1. Overview of AI in Radiation Oncology 2. A Framework for the Evaluation of AI in Healthcare 3. AI Evaluations in Radiation Oncology 4. Conclusions References Index

توضیحاتی در مورد کتاب به زبان اصلی :


The clinical use of Artificial Intelligence (AI) in radiation oncology is in its infancy. However, it is certain that AI is capable of making radiation oncology more precise and personalized with improved outcomes. Radiation oncology deploys an array of state-of-the-art technologies for imaging, treatment, planning, simulation, targeting, and quality assurance while managing the massive amount of data involving therapists, dosimetrists, physicists, nurses, technologists, and managers. AI consists of many powerful tools which can process a huge amount of inter-related data to improve accuracy, productivity, and automation in complex operations such as radiation oncology.This book offers an array of AI scientific concepts, and AI technology tools with selected examples of current applications to serve as a one-stop AI resource for the radiation oncology community. The clinical adoption, beyond research, will require ethical considerations and a framework for an overall assessment of AI as a set of powerful tools.30 renowned experts contributed to sixteen chapters organized into six sections: Define the Future, Strategy, AI Tools, AI Applications, and Assessment and Outcomes. The future is defined from a clinical and a technical perspective and the strategy discusses lessons learned from radiology experience in AI and the role of open access data to enhance the performance of AI tools. The AI tools include radiomics, segmentation, knowledge representation, and natural language processing. The AI applications discuss knowledge-based treatment planning and automation, AI-based treatment planning, prediction of radiotherapy toxicity, radiomics in cancer prognostication and treatment response, and the use of AI for mitigation of error propagation. The sixth section elucidates two critical issues in the clinical adoption: ethical issues and the evaluation of AI as a transformative technology.



پست ها تصادفی