توضیحاتی در مورد کتاب :
هوش افزوده یک رویکرد جایگزین هوش مصنوعی (AI) است که بر نقش کمکی هوش مصنوعی تاکید دارد. هوش افزوده با شبیه سازی انتظارات، کاوی آموزشی، حل مسئله، یادآوری، توالی یابی و قابلیت های تصمیم گیری، مهارت های استدلال انسان را در یک سیستم یا نرم افزار رباتیک افزایش می دهد. این کتاب مبتنی بر ترکیبی از تکنیکهایی مانند یادگیری ماشینی، یادگیری عمیق و محاسبات شناختی است.
این کتاب مدلهای هوش مصنوعی را توضیح میدهد که از فرآیندهای کمکی در موقعیتهای مختلف پشتیبانی میکنند.
هدف مشارکتکنندگان ارائه میکند. اطلاعات به مخاطبان مختلف با پیشرفتهای پیشگامانه در محاسبات ریاضی br>
- رابط های مغز و کامپیوتر
- ابزارهای درختی برای تجزیه و تحلیل شیمی سنجی طیف های مادون قرمز
- کاربردهای یادگیری عمیق در مهندسی پزشکی
- پیش بینی ورشکستگی مدل با استفاده از یک طبقهبندی تقویتکننده پیشرفته
- سیستمهای شهرت برای امنیت عامل تلفن همراه
- الگوریتم جستجوی کلاغ
- تشخیص و درمان COVID-19
br>
محتوا تلاش میکند تا جنبههای مختلف هوش افزوده را با توصیف پیشرفتهای تحقیقاتی اخیر و موضوعات پیشرفته مورد علاقه دانشگاهیان و محققانی که روی مشکلات یادگیری ماشین و هوش مصنوعی کار میکنند، ادغام کند.
فهرست مطالب :
Cover
Title
Copyright
End User License Agreement
Contents
Preface
List of Contributors
Integrating Educational Data Mining in Augmented Reality Virtual Learning Environment
Carlos Ankora1 and D. Aju1,*
1.1. INTRODUCTION
1.2. VIRTUAL LEARNING ENVIRONMENTS (VLE)
1.3. AUGMENTED REALITY (AR)
1.3.1. Elements of AR in a VLE
1.3.2. Target Markers used in AR Applications
1.3.3. Hardware Platforms/Peripherals
1.3.4. AR Applications in Education
1.4. DEVELOPMENT OF METHODOLOGY FOR AR IN VLE
1.4.1. Agile Methodology
1.4.2. Developing AR-VLE using Agile Scrum
1.5. AR SYSTEM DEVELOPMENT FOR VLE
1.5.1. Designing the 3D Models
BLENDER
1.5.2. Developing the AR Modules
UNITY 3D
1.6. EDUCATIONAL DATA MINING IN AR-VLE
CONCLUSION
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENTS
REFERENCES
Brain and Computer Interface
Kuldeep Singh Kaswan1,* and Jagjit Singh Dhatterwal2
2.1. INTRODUCTION
2.2. WHAT IS BCI?
2.3. BCI SENSOR WORLD OVERVIEW
2.4. HISTORY OF IMPLANTABLE ELECTRODES
2.5. TYPES OF MICROELECTRODES
2.5.1. Mass-Fabricated Microelectrodes
2.5.2. Silicon-Based Microelectrodes
2.5.3. Ceramic-Based Microelectrodes
2.5.4. Polyimide Microelectrode
2.5.5. Microelectrodes Connectors
2.5.6. ECoG Strip Electrodes
2.6. BCI EEG SENSORS
2.7. MODELING AND SIGNAL PROCESSING OF BMI/BCI TECHNIQUES OF MULTI MICRO ELECTRODE ARRAY
2.7.1. Binned Conceptual Data Models
2.7.2. EEG/ECoG Recordings
2.8. HARDWARE IMPLEMENTATION
2.8.1. Paralysis Patients Restoring Movement
2.8.2. EEG-Based Brain-Computer Interfaces
2.8.3. Direct Brain-Computer Interfaces
2.8.4. Recording, Extracting, and Decoding Neural Motor Commands
2.8.5. Predict Limb Movement Kinematics use of Multivariate Regression Analysis (MRA)
2.8.6. Monkey Brain Motor Commands of Extraction
2.8.7. Biofeedback Changes Coding of Robot Arm Movement
2.9. BRAIN CONTROL OF MULTIPLE-OUTPUT FUNCTIONS
2.10. BIOMIMETIC ROBOT RESEARCH
2.10.1. The Rationale for Biomimetic Hand Prostheses
2.10.2. Research Approach to Bio Mechatronics at SSSA
2.10.3. Using Direct BCIs to Control Biomimetic Robotic Prostheses
CONCLUSION
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENTS
REFERENCES
Potential Use of Tree-based Tools for Chemometric Analysis of Infrared Spectra
Lucas A.C. Minho1,*, Bárbara E.A. de Magalhães2 and Alexandre G.M. de Freitas3
3.1. INTRODUCTION
3.2. DECISION TREES (DT)
3.3. RANDOM FOREST (RF)
3.4. EXPERIMENTS
3.5. DIMENSIONALITY REDUCTION IN RAW SPECTROSCOPIC SPACE
3.5.1. Importance Measurements and Feature Ranking with Random Forest
3.5.1.1. Boruta Wrapper Algorithm
3.5.1.2. Feature Subset Selection with Boruta
3.6. ROBUSTNESS OF TREE-BASED ALGORITHMS TO NOISE
3.7. TREE-BASED ALGORITHMS IN DISCRIMINANT ANALYSIS
CONCLUSION
NOTES
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENTS
REFERENCES
Applications of Deep Learning in Medical Engineering
Sumit Kumar Jindal1,*, Sayak Banerjee1, Ritayan Patra1 and Arin Paul1
4.1. HISTORICAL OVERVIEW OF DEEP LEARNING
4.1.1. Machine Learning
4.1.2. Neural Networks
4.1.3. Deep Learning
4.2. ACTIVATION FUNCTIONS
4.2.1. Binary Activation Function
4.2.2. Sigmoid and SoftMax Activation Function
4.2.3. TanH Activation Function
4.2.4. ReLU and Leaky ReLU Activation Function
4.3. OPTIMIZERS AND LOSS
4.3.1. Optimizers
4.3.1.1. Adagrad
4.3.1.2. RMSProp
4.3.1.3. Adam Optimizer
4.3.2. Loss Functions
4.3.2.1. Mean Squared Error Loss
4.3.2.2. Cross – Entropy Loss
4.4. IMAGE RECOGNITION AND CLASSIFICATION
4.4.1. Convolution Layer
4.4.2. Pooling Layer
4.4.3. FULL CONNECTION
4.5. AUDIO SIGNAL PROCESSING
4.6. DEEP LEARNING IN DETECTION OF SLEEP APNEA
4.6.1. System Design
4.6.2. Detection of Apnea or Hypopnea Event
4.6.3. Deep Learning Model
4.6.4. Evaluation of the Model
4.7. DEEP LEARNING IN CARDIAC ARRHYTHMIA DETECTION
4.7.1. System Design
4.7.2. Deep Learning Model
4.7.3. Evaluation of the Model
4.8. DEEP LEARNING IN DETECTION OF BRAIN TUMOURS
4.8.1. System Design
4.8.2. Deep Learning Model
4.8.3. Training the Model
4.8.4. Result
DISCUSSION AND FUTURE WORKS
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENTS
REFERENCES
Bankruptcy Prediction Model Using an Enhanced Boosting Classifier based on Sequential Backward Selector Technique
Makram Soui1,*, Nada Namani Zitouni2, Salima Smiti3, Kailash Kumar1 and Ahmad Aljabr1
5.1. INTRODUCTION
5.2. RELATED WORK
5.2.1. Statistical Techniques
5.2.2. Artificial Intelligent Techniques
5.2.2.1. Machine Learning Techniques
5.2.2.2. Deep Learning Techniques
5.3. BACKGROUND
5.3.1. Feature Selection (FS) Algorithms
5.3.1.1. Sequential Feature Selection (SFS)
5.3.1.2. Particle Swarm Optimization (PSO)
5.3.1.3. Random Subset Feature Selection (RSFS)
5.3.2. Rule-Based Classifiers
5.3.2.1. Decision Tree Classifier: CART
5.3.2.2. Decision Tree Classifier: J48 (C4.5)
5.3.2.3. OneR Classifier
5.3.2.4. PART Classifier
5.3.3. Ensemble Methods
5.3.3.1. Random Forest Classifier
5.3.3.2. Boosting Techniques
5.4.2.3. Proposed Method
5.4.1. Feature Selection Phase
5.4.2. Classification Phase
5.4.3. Testing Sub-Phase
5.5. Validation
5.5.1. Research Questions
5.5.2. Description of the Experimental Database
5.5.3. Evaluation Criteria
5.6. RESULTS AND DISCUSSION
5.6.1. Parameter Settings
5.6.2. Results for Research Question 1
5.6.3. Results for Research Question 2
CONCLUSION
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENTS
REFERENCES
Detecting Ballot Stuff Collusion Attack in Reputation System for Mobile Agents Security
Priyanka Mishra1,*
6.1. INTRODUCTION
6.2. TRUST BASED REPUTATION SYSTEM
6.3. RELATED WORKS
6.4. MREP MODEL
6.5. DETECTION METHODOLOGY
6.6. Simulation Results
CONCLUSION
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENTS
REFERENCES
Crow Search Algorithm: A Systematic Review
Ali Aloss1, Barnali Sahu1,* and Om Prakash Jena2
7.1. INTRODUCTION
7.2. CROW SEARCH OPTIMIZATION
7.2.1. Overview of Crow Search Optimization
7.2.2. Features of Crow Search Algorithm
7.2.3. Algorithm structure of CSO
7.2.4. Pseudocode of CSA
7.3. CSA STUDIES
7.3.1. Modifications of CSA
7.3.1.1. Chaotic CSA(CCSA)
7.3.1.2. Fuzzy CSA(FCSA)
7.3.1.3. Other updates of CSA
7.3.2. Hybridization
7.3.3. Multi-objective and Binary Optimization.
7.3.4. Other applications: To date, CSA has been used in many other applications in varied academic and industrial fields. Table 5 shows the other applications of CSA.
7.4. APPLICATION OF CSA IN MEDICAL DOMAIN
7.5. DISCUSSION AND CRITICAL ANALYSIS
CONCLUSION
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENTS
REFERENCES
The Quantitative and Qualitative Assessment of Re-Search Conducted Using Computational Intelligence for the Diagnosis or Treatment of COVID-19
Mallikarjun Kappi1,*, Madhu S.2, Balabhim Sankrappa Biradar3 and B.U. Kannappanavar4
8.1. INTRODUCTION, BACKGROUND, AND OVERVIEW
8.2. RELATED STUDIES
8.3. OVERVIEW OF COMPUTATIONAL INTELLIGENCE
8.3.1. What is Computational Intelligence (CI)
8.3.2. Types of Computational Intelligence
8.3.2.1. Fuzzy (Logic) Sets
8.3.2.2. Artificial Neural Network
8.3.2.3. Evolutionary Computing (EC)
8.3.2.4. Swarm Intelligence (SI)
8.3.2.5. Artificial Immune Systems (AIS)
8.4. COVID-19 DIAGNOSIS TOOLS
8.5. DATA SOURCE AND METHODOLOGY
8.6. RESULTS ANALYSIS AND DISCUSSION
8.6.1. Most Productive Countries
8.6.2. Most Preferred Sources
8.6.3. Highly Prolific Institutions
8.6.4. Highly Prolific Authors
8.6.5. Most Global Cited Papers
8.6.6. Most Frequent Author Keywords
8.7. CONCLUSION AND FORTHCOMING OUTLOOK
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENTS
REFERENCES
Subject Index
Back Cover
توضیحاتی در مورد کتاب به زبان اصلی :
Augmented intelligence is an alternate approach of artificial intelligence (AI), which emphasizes AI’s assistive role. Augmented intelligence enhances human skills of reasoning in a robotic system or software by simulating expectancy, educational mining, problem solving, recollection, sequencing, and decision-making capabilities. It is based on a combination of techniques such as machine learning, deep learning and cognitive computing.
This book explains artificial intelligence models that support assistive processes in different situations.
The contributors aim to provide information to a diverse audience with groundbreaking developments in mathematical computing.
The book presents 8 chapters on these topics:
- Educational data mining in augmented reality virtual learning environment
- Brain and computer interfaces
- Tree-based tools for chemometric analysis of infrared spectra
- Applications of deep learning in medical engineering
- Bankruptcy prediction model using an enhanced boosting classifier
- Reputation systems for mobile agent security
- The crow search algorithm
- COVID-19 diagnosis and treatment
The contents attempt to integrate various facets of augmented Intelligence, by describing recent research developments and advanced topics of interest to academicians and researchers working on machine learning problems and AI.