Axially Chiral Compounds AsymmetricSynthesis and Applications.

دانلود کتاب Axially Chiral Compounds AsymmetricSynthesis and Applications.

49000 تومان موجود

کتاب ترکیبات کایرال محوری ترکیبات نامتقارن و کاربردها. نسخه زبان اصلی

دانلود کتاب ترکیبات کایرال محوری ترکیبات نامتقارن و کاربردها. بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 8


توضیحاتی در مورد کتاب Axially Chiral Compounds AsymmetricSynthesis and Applications.

نام کتاب : Axially Chiral Compounds AsymmetricSynthesis and Applications.
عنوان ترجمه شده به فارسی : ترکیبات کایرال محوری ترکیبات نامتقارن و کاربردها.
سری : Textes et études liturgiques
نویسندگان :
ناشر : Wiley-Vch
سال نشر : 2021
تعداد صفحات : 339
ISBN (شابک) : 9783527347124 , 3527825169
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 16 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover
Title Page
Contents
Preface
Part I Asymmetric Synthesis
1 Introduction and Characteristics
1.1 Introduction and Classification
1.2 Specification of Configuration
References
2 Metal-Catalyzed Asymmetric Synthesis of Biaryl Atropisomers
2.1 Introduction
2.2 Biaryl Coupling
2.2.1 Cross-coupling
2.2.2 Other Types of Cross-coupling
2.2.3 Oxidative Coupling
2.3 Desymmetrization and (Dynamic) Kinetic Resolution via Functional Group Transformation
2.3.1 Desymmetrization of Prochiral Biaryls
2.3.2 Kinetic Resolution of Racemic Axially Chiral Biaryls
2.3.3 Dynamic Kinetic Resolution of Racemic Axially Chiral Biaryls
2.3.4 Ring-opening Reactions
2.4 Formation of Aromatic Ring via [2 + 2 + 2] Cycloaddition
2.4.1 Cobalt-Catalyzed Enantioselective [2 + 2 + 2] Cycloadditions
2.4.2 Rhodium-Catalyzed Enantioselective [2 + 2 + 2] Cycloadditions
2.4.3 Iridium-Catalyzed Enantioselective [2 + 2 + 2] Cycloadditions
2.5 CH Bond Functionalization
2.5.1 Chiral Catalyst-Controlled CH Bond Functionalization
2.5.2 Chiral Auxiliary-Induced CH Bond Functionalization
2.5.3 Atroposelective CH Arylation
2.6 Summary and Conclusions
References
3 Organocatalytic Asymmetric Synthesis of Biaryl Atropisomers
3.1 Introduction
3.2 Atroposelective Synthesis of Biaryls by Kinetic Resolution Strategy
3.2.1 Conventional Kinetic Resolution
3.2.2 Dynamic Kinetic Resolution Strategy
3.3 Atroposelective Synthesis of Biaryls by Desymmetrization Strategy
3.4 Atroposelective Arene Formation to Access Axially Chiral Biaryls
3.4.1 Intramolecular Atroposelective Arene Formation
3.4.2 Atroposelective Arene Formation via Intermolecular Annulation
3.5 Atroposelective Synthesis of Biaryls via Direct C–H Arylation Strategy
3.5.1 Organocatalytic C–H Arylation by [3,3]-Sigmatropic Rearrangement
3.5.2 Atroposelective Arylation Based on Quinone Derivatives
3.5.3 Atroposelective Nucleophilic Aromatic Substitution
3.6 Conclusion
References
4 Enantioselective Synthesis of Heterobiaryl Atropisomers
4.1 Introduction
4.2 Atropisomeric Heterobiaryls Featuring Two Six-Membered Rings
4.2.1 Functionalization of Heterobiaryls
4.2.2 Atroposelective Ring Formation
4.3 Atropisomeric Heterobiaryls Featuring a Five-Membered Ring
4.3.1 From Preformed Cyclic Systems
4.3.2 Formation of the Heterobiaryl Axis
4.3.3 Atroposelective Ring Formations
4.4 Atropisomeric Heterobiaryls Featuring Two Five-Membered Rings
4.4.1 Functionalization of Heterobiaryls
4.4.2 Aromatization of a Bis-heterocycle
4.4.3 Atroposelective Ring Formations
4.5 Conclusion and Outlook
References
5 Asymmetric Synthesis of Nonbiaryl Atropisomers
5.1 Introduction
5.2 Styrenes
5.2.1 Axially Chiral Styrenes via Point-to-Axial Chirality Transfer
5.2.2 Axially Chiral Styrenes Controlled by Chiral Auxiliary
5.2.3 Metal-Catalyzed Enantioselective Synthesis of Axially Chiral Styrene
5.2.4 Organocatalytic Synthesis of Axially Chiral Styrenes
5.3 Amides
5.3.1 Stereochemical Stability of Atropisomeric Amides
5.3.2 Lithiation of Atropisomeric Amides to Access Various Alkylations
5.3.3 Syntheses of Atropisomerically Stable Amides via Chiral Auxiliaries
5.3.4 Catalytic Asymmetric Dihydroxylation via Sharpless KR Conditions
5.3.5 Atroposelective Aldol Reactions via DKR Approach
5.3.6 Atroposelective Halogenation of Aromatic Amides
5.3.7 Atroposelective [2 + 2 + 2] Cycloaddition Toward Atropisomerically Stable Benzamides
5.3.8 Enantioselective O-alkylation of Axially Chiral Amides
5.4 Diaryl Ethers
5.4.1 Resolution Studies of Diaryl Ethers
5.4.2 Enantioselective Synthesis of Diaryl Ether
5.4.3 Enzyme-Catalyzed Synthesis of Diaryl Ether
5.4.4 Synthesis of Scaffolds Related to Diaryl Ethers via Csp2-H Activation
5.5 Anilides
5.5.1 Stereochemical Stability of Axially Chiral Anilides
5.5.2 Kinetic Resolution or DKR to Access Axially Chiral Anilides
5.5.3 Synthesis of Axially Chiral Anilides via Planar to Axial Chirality Transfer
5.5.4 Metal-Catalyzed Synthesis of Chiral Anilides
5.5.5 Organocatalytic Synthesis of Chiral Anilides
5.6 Lactams and Related Scaffolds
5.6.1 Stereochemical Stability of Atropisomeric Lactams
5.6.2 Diastereoselective Cyclization Toward Atropisomeric Lactams
5.6.3 Enantioselective N-arylation Toward Lactam Atropisomers
5.6.4 Atroposelective [2 + 2 + 2] Cycloaddition with Isocyanates
5.6.5 Chiral Auxiliary Approach Toward Resolving Atropisomeric Lactams
5.6.6 Enantioselective Brønsted Base-Catalyzed Tandem Isomerization–Michael Reactions Toward Atropisomeric Lactams
5.7 Diaryl Amines
5.7.1 Stereochemical Stability of Diaryl Amines
5.7.2 Atroposelective Approaches Toward Diaryl Amines or Related Scaffolds
References
6 Asymmetric Synthesis of Chiral Allenes
6.1 Introduction
6.2 Substrate- and Reagent-Controlled Chiral Allenes Synthesis: Stoichiometric Asymmetric Reactions
6.2.1 Chirality Transfer
6.2.2 Asymmetric Reaction with Stoichiometric Chiral Reagents
6.3 Catalytic Asymmetric Strategies for the Syntheses of Chiral Allenes
6.3.1 Catalytic Enantioselective Synthesis from Achiral Substances
6.3.2 Enantioselective Allene Synthesis from Chiral Substrates
6.4 Conclusion and Perspective
References
7 Asymmetric Synthesis of Axially Chiral Natural Products
7.1 Introduction
7.2 Diastereoselective Coupling—Point to Axial Chirality Transfer
7.2.1 Intramolecular Diastereoselective Coupling
7.2.2 Intermolecular Diastereoselective Aryl Coupling
7.3 Atroposelective Aryl Coupling with Chiral Catalyst
7.3.1 Catalytic Oxidative Aryl Coupling
7.3.2 Transition Metal-Catalyzed Atroposelective Aryl Coupling
7.4 Asymmetric Transformation of Biaryls
7.4.1 Dynamic Kinetic Resolution of Biaryl Structure – The Lactone Method
7.4.2 Desymmetrization of Prostereogenic Biaryls
7.4.3 Catalytic Atroposelective C–H Functionalization of Biaryls
7.4.4 Diastereoselective Synthesis from Racemic Biaryls
7.5 Atroposelective Aromatization
7.6 Diastereoselective Macrocyclization
7.7 Conclusions and Perspectives
References
Part II Applications
8 Asymmetric Transformations
8.1 Asymmetric Transformation of Axially Chiral Biaryls and Heterobiaryls
8.1.1 Asymmetric Transformations with Preservation of Axially Chiral Backbone
8.1.2 Asymmetric Transformations with Axial-to-central Chirality Transfer
8.2 Asymmetric Transformation of Axially Chiral Non-biaryl Compounds
8.2.1 Cycloadditions and Cyclizations
8.2.2 Reaction with Nucleophiles
8.2.3 Reaction with Electrophiles
8.2.4 Photoreactions
8.3 Asymmetric Transformation of Chiral Allenes
8.3.1 Cyclization
8.3.2 Cycloaddition
8.3.3 Reaction with Nucleophiles
8.3.4 Chiral Allene as Nucleophiles
8.4 Conclusion
References
9 Application for Axially Chiral Ligands
9.1 Introduction
9.2 Monodentate Phosphines
9.2.1 Asymmetric Hydrogenations
9.2.2 Asymmetric Hydrosilylation of Olefins
9.2.3 Asymmetric Allylic Substitutions
9.2.4 Miscellaneous Catalytic Asymmetric Transformations
9.3 Diphosphine Ligands
9.3.1 Hydrogenation Reactions
9.3.2 CC Bond Formation
9.3.3 CX Bond Formation
9.4 Phosphoramidite and Phosphamide Ligands
9.4.1 Asymmetric Conjugate Addition with Organometallic Nucleophiles
9.4.2 Hydrogenation
9.4.3 Hydroboration/Hydrosilylation Reactions
9.4.4 Allylic Substitutions
9.4.5 Other Asymmetric Transformations
9.5 N–P Ligands
9.5.1 Applications of N, P-Ligands
9.6 C2-Symmetric Diols
9.6.1 Mukaiyama Aldol Condensation Reactions
9.6.2 Diels–Alder Reaction
9.6.3 Arrangement Reaction
9.6.4 Reductive Reactions
9.7 Other Axially Chiral Ligands in Asymmetric Transformations
9.8 Conclusions
References
10 Application for Axially Chiral Organocatalysts
10.1 Introduction
10.2 Chiral Brønsted Acid Catalysts
10.2.1 Chiral BINOL Derivatives
10.2.2 Chiral Phosphoric Acid
10.3 Chiral Counteranion Catalysts and Chiral Phase Transfer Catalysts
10.4 Brønsted Base Catalyst
10.5 Lewis Base Catalysts
References
11 Application in Drugs and Materials
11.1 Drugs
11.2 Chiral Recognition
11.3 Chiral Additives in Liquid Crystals
References
Index
EULA




پست ها تصادفی