توضیحاتی در مورد کتاب Basic Radar Analysis
نام کتاب : Basic Radar Analysis
ویرایش : 2
عنوان ترجمه شده به فارسی : تجزیه و تحلیل رادار پایه
سری :
نویسندگان : Shawn R. German, Olga Budge
ناشر : Artech House
سال نشر : 2020
تعداد صفحات : 837
ISBN (شابک) : 9781630815554 , 1630815551
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 48 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Basic Radar Analysis, Second Edition
Contents
Chapter 1 Radar Basics
1.1 Introduction
1.2 Radar Types
1.3 Range Measurement
1.4 Ambiguous Range
1.5 Processing window and Instrumented Range
1.6 Range-Rate Measurement: Doppler
1.7 Decibels
1.8 dB Arithmetic
1.9 Complex Signal Notation
1.10 Radar Block Diagram
1.11 Exercises
References
Chapter 2 Radar Range Equation
2.1 Introduction
2.2 Basic Radar Range Equation
2.2.1 Derivation of ES
2.2.1.1 The Transmitter
2.2.1.2 The Antenna
2.2.1.3 Effective Isotropic Radiated Power
2.2.1.4 Antenna Directivity
2.2.1.5 The Target and Radar Cross Section
2.2.1.6 Antenna Again
2.2.1.7 Antenna Directivity Again
2.2.1.8 Losses
2.2.2 Derivation of EN
2.3 A Power Approach to SNR
2.4 Radar Range Equation Example
2.5 Detection Range
2.6 Search Radar Range Equation
2.7 Search Radar Range Equation Example
2.8 Radar Range Equation Summary
2.9 Exercises
References
Appendix 2A: Derivation of Search Solid Angle Equation
Chapter 3 Radar Cross Section
3.1 Introduction
3.2 RCS of Simple Shapes
3.3 Swerling RCS Models
3.3.1 Swerling Statistics
3.3.2 Swerling Fluctuation Models
3.3.3 Math Behind the Fluctuation Model
3.4 Relation of Swerling Models to Actual Targets
3.5 Simulating Swerling Targets
3.6 Frequency Agility and SW2 or SW4 Targets
3.7 Exercises
References
Chapter 4 Noise
4.1 Introduction
4.2 Noise in Resistive Networks
4.2.1 Thevenin Equivalent Circuit of a Noisy Resistor
4.2.2 Multiple Noisy Resistors
4.3 Equivalent/Effective Noise Temperature for Active Devices
4.4 Noise Figure
4.4.1 Derivation of Noise Figure
4.4.2 Attenuators
4.5 Noise Figure of Cascaded Devices
4.6 An Interesting Example
4.7 Output Noise Energy When the Source Temperature Is Not T0
4.8 A Note About Cascaded Devices and the Radar Range Equation
4.9 Cascaded Attenuators
4.10 Exercises
References
Chapter 5 Radar Losses
5.1 Introduction
5.2 Transmit Losses
5.3 Antenna Losses
5.4 Propagation Losses
5.5 Receive Antenna and RF Losses
5.6 Processor and Detection Losses
5.7 Exercises
References
Appendix 5A: Waveguide Attenuation
5A.1 Exercises
Appendix 5B: Atmospheric and Rain Attenuation
5B.1 Function tropatten.m
5B.1.1 Compute International Civil Aviation Organization (ICAO) Standard Atmosphere 1964
5B.1.2 Absorption Coefficient for Oxygen
5B.1.3 Absorption Coefficient for Water Vapor
5B.2 Function troprefract.m
5B.3 Function troploss.m
5B.4 Function rainAttn2way.m
Chapter 6 Detection Theory
6.1 Introduction
6.2 Noise in Receivers
6.2.1 IF Configuration
6.2.2 Baseband Configuration
6.3 Signal in Receivers
6.3.1 Introduction and Background
6.3.2 Signal Model for SW0/SW5 Targets
6.3.3 Signal Model for SW1/SW2 Targets
6.3.4 Signal Model for SW3/SW4 Targets
6.4 Signal-Plus-Noise in Receivers
6.4.1 General Formulation
6.4.2 Signal-Plus-Noise Model for SW1/SW2 Targets
6.4.3 Signal-Plus-Noise Model for SW0/SW5 Targets
6.4.4 Signal-Plus-Noise Model for SW3/SW4 Targets
6.5 Detection Probability
6.5.1 Introduction
6.5.2 Amplitude Detector Types
6.5.3 Detection Logic
6.5.4 Calculation of Pd and Pfa
6.5.4.1 False Alarm Probability
6.5.4.2 Detection Probability
SW0/SW5 Target
SW1/SW2 Target
SW3/SW4 Target
6.5.5 Behavior versus Target Type
6.6 Determination of False Alarm Probability
6.6.1 Pfa Computation Example
6.6.2 Detection Contour Example
6.7 Summary
6.8 Exercises
References
Chapter 7 CFAR Processing
7.1 Introduction
7.2 Cell-Averaging CFAR
7.2.1 Estimation of Interference Power
7.2.2 CA-CFAR Analysis
7.2.3 CA-CFAR Example
7.2.4 CA-CFAR FIR Implementation
7.2.5 CFAR Processing at the Edges of Instrumentation
7.3 CA-CFAR with Greatest-of Selection
7.3.1 GO-CFAR Example
7.4 CA-CFAR with Smallest of Selection
7.4.1 SO-CFAR Example
7.5 Ordered Statistic CFAR
7.5.1 OS-CFAR Example
7.6 Minimum Selected CA-CFAR
7.6.1 MSCA-CFAR Algorithm
7.6.2 MSCA-CFAR Analysis
7.6.3 MSCA-CFAR Example
7.7 Summary
7.7.1 CFAR Problems and Remedies
7.7.2 CFAR Scale Factors
7.8 Exercises
References
Appendix 7A: Maximum Likelihood Estimation
Appendix 7B: Toeplitz Matrix and CFAR
Chapter 8 Matched Filter
8.1 Introduction
8.2 Problem Definition
8.3 Problem Solution
8.4 Matched Filter Examples
8.4.1 General Formulation
8.4.2 Response for an Unmodulated Pulse
8.4.3 Response for an LFM Pulse
8.5 Summary
8.6 Closing Comments
8.7 Exercises
References
Chapter 9 Detection Probability Improvement Techniques
9.1 Introduction
9.2 Coherent Integration
9.2.1 SNR Analysis
9.2.2 Detection Analysis
9.3 Noncoherent Integration
9.3.1 Coherent and Noncoherent Integration Comparison
9.3.2 Detection Example with Coherent and Noncoherent Integration
9.4 Cumulative Detection Probability
9.4.1 Cumulative Detection Probability Example
9.5 m-of-n Detection
9.5.1 m-of-n Detection Example for SW0/SW5, SW2 and SW4 Targets
9.5.2 m-of-n and Noncoherent Comparison for SW1 and SW2 Targets
9.6 Exercises
Appendix 9A: Noise Autocorrelation at the Output of a Matched Filter
Appendix 9B: Probability of Detecting SW1 and SW3 Targets on m Closely Spaced Pulses
9B.1 Marcum Q Function
Appendix 9C: Cumulative Detection Probability
Chapter 10 Ambiguity Function
10.1 Introduction
10.2 Ambiguity Function Development
10.3 Example 1: Unmodulated Pulse
10.4 Example 2: LFM Pulse
10.5 Numerical Techniques
10.6 Ambiguity Function Generation Using the FFT
10.7 Exercises
References
Chapter 11 Waveform Coding
11.1 Introduction
11.2 FM Waveforms
11.2.1 LFM with Amplitude Weighting
11.2.2 Nonlinear FM
11.2.2.1 Fowle Example with Uniform Um(f )
11.2.2.2 Fowle Example with Cosine on a Pedestal Um(f )
11.2.2.3 NLFM Design Procedures
11.3 Phase-coded Pulses
11.3.1 Frank Polyphase Coding
11.3.2 Barker-coded Waveforms
11.3.3 PRN-coded Pulses
11.3.3.1 Mismatched PRN Processing
11.4 Step Frequency Waveforms
11.4.1 Doppler Effects
11.5 Costas Waveforms
11.5.1 Costas Waveform Example
11.6 Closing Comments
11.7 Exercises
References
Appendix 11A: LFM and the sinc2(x) Function
Chapter 12 Stretch Processing
12.1 Introduction
12.2 Stretch Processor Configuration
12.3 Stretch Processor Operation
12.4 Stretch Processor SNR
12.4.1 Matched Filter
12.4.2 Stretch Processor
12.5 Practical Implementation Issues
12.5.1 Stretch Processor Example
12.6 Range-rate Effects
12.6.1 Expanded Transmit and Receive Signal Models
12.6.2 Stretch Processor Modification
12.6.3 Slope Mismatch Effects
12.6.3.1 Slope Mismatch Case 1: (hṘ = ( – no compensation
Slope Mismatch Example 1
Slope Mismatch Example 2
12.6.3.2 Slope Mismatch Case 2: (hṘ = (r – Perfect Compensation
12.6.3.3 Slope Mismatch Case 3: (hṘ = ( (1(2Ṙh/c)2 – Partial Compensation
12.6.4 Range-rate Effects on Range Bias
12.6.4.1 Case 1 – (hṘ = (
12.6.4.2 Case 2: Imperfect Estimate of Ṙ
12.6.5 Doppler Frequency Measurement Effects
12.6.6 A Matched Filter Perspective
12.7 Exercises
References
Chapter 13 Phased Array Antenna Basics
13.1 Introduction
13.2 Two-Element Array Antenna
13.2.1 Transmit Perspective
13.2.2 Receive Perspective
13.3 N-Element Linear Array
13.4 Directive Gain Pattern (Antenna Pattern)
13.5 Beamwidth, Sidelobes, and Amplitude Weighting
13.6 Steering
13.6.1 Time-delay Steering
13.6.2 Phase Steering
13.6.3 Phase Shifters
13.7 Element Pattern
13.8 Array Factor Relation to the Discrete-time Fourier Transform
13.9 Planar Arrays
13.9.1 Weights for Beam Steering
13.9.2 Array Shapes and Element Locations (Element Packing)
13.9.3 Feeds
13.9.4 Amplitude Weighting
13.9.5 Computing Antenna Patterns for Planar Arrays
13.9.5.1 Planar Arrays with Rectangular Packing
13.9.5.2 Planar Arrays with Triangular Packing
13.9.6 Directive Gain Pattern
13.9.7 Grating Lobes
13.9.7.1 Grating Lobes in Arrays with Rectangular Packing
13.9.7.2 Grating Lobes in Arrays with Triangular Packing
13.10 Polarization
13.11 Reflector Antennas
13.12 Other Antenna Parameters
13.13 Exercises
References
Appendix 13A: An Equation for Taylor Weights
Appendix 13B: Computation of Antenna Patterns
13B.1 Linear Arrays
13B.2 Planar Arrays
13B.2.1 Rectangular Packing
13B.2.2 Triangular Packing
Chapter 14 AESA Basics and Related Topics
14.1 Introduction
14.2 T/R Module
14.3 Time-delay Steering and Wideband Waveforms
14.3.1 Subarray Size, Scan Angle, and Waveform Bandwidth
14.3.2 Subarray Pattern Distortion Examples
14.3.3 Array Beam Forming with TDUs
14.4 Simultaneous Multiple Beams
14.4.1 Overlapped Subarrays
14.4.2 Nonuniform Subarray Sizes
14.4.3 Transmit Array Considerations
14.5 AESA Noise Figure
14.5.1 T/R Module Noise Figure
14.5.2 Subarray Gain and Noise Figure
14.5.3 Array Gain and Noise Figure
14.5.4 AESA Noise Figure Example
14.6 Exercises
References
Appendix 14A: Derivation of the matched filter output for an AESA (Equation 14.10)
Chapter 15 Signal Processors
15.1 Introduction
15.2 Signal Processor Structure
References
Chapter 16 Signal Processor Analysis
16.1 Introduction
16.2 Signal Model Generation
16.2.1 Signal Model: Time Domain Analysis
16.2.2 Signal Model: Frequency Domain Analysis
16.2.3 Relation of PC and PS to the Radar Range Equation
16.3 Signal Processor Analyses
16.3.1 Background
16.4 Exercises
References
Appendix 16A: Derivation Signal Processor Input Spectrum
Appendix 16B: Proof that r(t) is Wide-Sense Cyclostationary
Chapter 17 Clutter Model
17.1 Introduction
17.2 Ground Clutter Model
17.2.1 Ground Clutter RCS Model
17.2.2 Ground Clutter Spectrum Model
17.3 Rain Clutter Model
17.3.1 Rain Clutter RCS Model
17.3.2 Rain Clutter Spectral Model
17.4 Exercises
References
Chapter 18 Moving Target Indicator (MTI)
18.1 Introduction
18.1.1 MTI Response Normalization
18.2 MTI Clutter Performance
18.2.1 Clutter Attenuation
18.2.1.1 Gaussian Spectrum
18.2.1.2 Exponential Spectrum
18.2.2 SCR Improvement
18.3 Ground Clutter Example
18.4 Rain Clutter Example
18.5 Phase Noise
18.5.1 Higher Order MTI Processors
18.5.2 Staggered PRIs
18.5.3 MTI Transients
18.6 Exercises
References
Chapter 19 Digital Pulsed Doppler Processors
19.1 Introduction
19.2 Pulsed Doppler Clutter
19.3 Signal Processor Configuration
19.4 Digital Signal Processor Analysis Techniques
19.4.1 Phase Noise and Range Correlation Effects
19.4.2 ADC Considerations
19.5 Summary and Rules of Thumb
19.6 HPRF Pulsed Doppler Processor Example
19.7 MPRF Pulsed Doppler Processor Example
19.8 LPRF Pulsed Doppler Signal Processor Example
19.9 Exercises
References
Appendix 19A: Derivation of
Appendix 19B: FFT Frequency Response
Chapter 20 Analog Pulsed Doppler Processors
20.1 Introduction
20.2 Analog Pulsed Doppler Signal Processor Example
20.3 Exercises
References
Chapter 21 Chaff Analysis
21.1 Introduction
21.2 chaff analysis example
21.3 Exercises
References
Chapter 22 Radar Receiver Basics
22.1 Introduction
22.2 Single-Conversion Superheterodyne Receiver
22.3 Dual-Conversion Superheterodyne Receiver
22.4 Receiver Noise
22.5 The 1-dB Gain Compression Point
22.6 Dynamic Range
22.6.1 Sensitivity
22.6.1.1 Tangential Sensitivity
22.6.2 Minimum Detectable and Minimum Discernable Signal
22.6.3 Intermodulation Distortion
22.6.4 Required Dynamic Range
22.7 Cascade Analysis
22.7.1 Cascade Analysis Conventions
22.7.2 Procedure
22.7.3 Power Gain
22.7.4 Noise Figure and Noise Temperature
22.7.5 1-dB Compression Point
22.7.6 Second-Order Intercept
22.7.7 Third-Order Intercept
22.8 Digital Receiver
22.8.1 Bandpass Sampling
22.8.2 Digital Down conversion
22.8.3 Practical DDC
22.8.4 CIC Filter Structure
22.8.4.1 Basic Integrator
22.8.4.2 Basic Comb Filter
22.8.4.3 CIC Filter Frequency Response
22.8.4.4 Example: CIC Decimation Filter
22.8.5 Analog-to-Digital Converter
22.8.5.1 Quantization
22.8.5.2 Quantization Error
22.8.5.3 Quantization Noise
22.8.5.4 ADC Noise Figure
22.8.5.5 Dither
22.9 Receiver Configurations
22.10 Exercises
References
Appendix 22A: Digital Down conversion Using Band-pass Sampling
Chapter 23 Introduction to Synthetic ApertureRadar Signal Processing
23.2 Background
23.2.1 Linear Array Theory
23.2.2 Transition to SAR Theory
23.1 Introduction
23.3 Development of SAR-Specific Equations
23.4 Types of SAR
23.4.1 Theoretical Limits for Strip Map SAR
23.4.2 Effects of Imaged Area Width on Strip Map SAR Resolution
23.5 SAR Signal Characterization
23.5.1 Derivation of the SAR Signal
23.5.2 Examination of the Phase of the SAR Signal
23.5.2.1 Linear Phase, or Constant Frequency, Term
23.5.2.2 Quadratic Phase, or LFM, Term
23.5.3 Extracting the Cross-Range Information
23.6 Practical Implementation
23.6.1 A Discrete-Time Model
23.6.2 Other Considerations
23.7 An Algorithm for Creating a Cross-Range Image
23.8 Example 1 - Generation of a Cross-range SAR Image
23.9 Down-Range and Cross-Range Imaging
23.9.1 Signal Definition
23.9.1.1 Removal of the Carrier and Gross Doppler
23.9.1.2 Single-Pulse Matched Filter
23.9.1.3 Generation of the Sampled Signal
23.9.2 Preliminary Processing Considerations
23.9.2.1 Range Cell Migration Correction
23.9.2.2 RCMC Algorithm
23.9.3 Quadratic Phase Removal and Image Formation
23.10 Algorithm for Creating a Cross- and Down-Range Image
23.11 Example 2: Cross- and Down-range SAR Image
23.12 An Image-Sharpening Refinement
23.13 Closing Remarks
23.14 Exercises
References
Chapter 24 Introduction to Space-Time Adaptive Processing
24.1 Introduction
24.2 Spatial Processing
24.2.1 Signal Plus Noise
24.2.2 Signal Plus Noise and Interference
24.2.3 Example 1: Spatial Processing
24.3 temporal processing
24.3.1 Signal
24.3.2 Noise
24.3.3 Interference
24.3.4 Doppler Processor
24.3.5 Example 2: Temporal Processing
24.4 Adaptivity Issues
24.5 Space-Time Processing
24.5.1 Example 3: Space-Time Processing
24.5.2 Example 4: Airborne Radar Clutter Example
24.6 Adaptivity Again
24.7 Practical Considerations
24.8 Exercises
References
Chapter 25 Sidelobe Cancellation
25.1 Introduction
25.2 Interference Canceller
25.3 Interference Cancellation Algorithm
25.3.1 Single Interference Signal
25.3.2 Simple Canceler Example
25.3.3 Multiple Interference Sources
25.4 SLC Implementation Considerations
25.4.1 Form of vm(t) and va(t)
25.4.2 Properties of vs(t), vI(t), nm(t), and nan(t)
25.4.3 Scaling of Powers
25.4.4 Two Auxiliary Channel Open-Loop SLC Example
25.4.5 Performance Measures
25.4.6 Practical Implementation Considerations
25.4.7 Two Auxiliary Channel Open-Loop SLC Example with SMI
25.5 Howells-Applebaum Sidelobe Canceller
25.5.1 Howells-Applebaum Implementation
25.5.2 IF Implementation
25.5.3 Single-Loop Howells-Applebaum SLC Example
25.5.4 Two-Loop Howells-Applebaum SLC Example
25.6 Sidelobe Blanker
25.7 Exercises
References
Appendix 25A: Derivation of (25.40)
Chapter 26 Advances in Radar
26.1 Introduction
26.2 MIMO Radar
26.3 Cognitive Radar
26.4 Other Advancements in Radar Theory
26.5 Hardware Advancements
26.6 Conclusion
References
Appendix A Data Windowing Functions
Acronyms and Abbreviations
About the Authors
Index