Basic Semiconductor Physics

دانلود کتاب Basic Semiconductor Physics

44000 تومان موجود

کتاب فیزیک نیمه هادی های پایه نسخه زبان اصلی

دانلود کتاب فیزیک نیمه هادی های پایه بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 13


توضیحاتی در مورد کتاب Basic Semiconductor Physics

نام کتاب : Basic Semiconductor Physics
ویرایش : 4
عنوان ترجمه شده به فارسی : فیزیک نیمه هادی های پایه
سری : Graduate Texts in Physics
نویسندگان :
ناشر : Springer
سال نشر : 2023
تعداد صفحات : 790
ISBN (شابک) : 9783031255106 , 9783031255113
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 19 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Preface
Contents
1 Energy Band Structures of Semiconductors
1.1 Free-Electron Model
1.2 Bloch Theorem
1.3 Nearly Free Electron Approximation
1.4 Reduced Zone Scheme
1.5 Free–Electron Bands (Empty–Lattice Bands)
1.5.1 First Brillouin Zone
1.5.2 Reciprocal Lattice Vectors of fcc Crystal
1.5.3 Free Electron Bands
1.6 Pseudopotential Method
1.6.1 Local Pseudopotential Theory
1.6.2 Pseudopotential Form Factors
1.6.3 Nonlocal Pseudopotential Theory
1.6.4 Spin–Orbit Interaction
1.6.5 Energy Band Calculation by Local Pseudopotential Method
1.6.6 Energy Band Calculations by Nonlocal Pseudopotential Method with Spin–orbit Interaction
1.7 kcdotp Perturbation
1.7.1 kcdotp Hamiltonian
1.7.2 Derivation of the k cdotp Parameters
1.7.3 15–band k cdotp Method
1.7.4 Antisymmetric Potentials for Zinc Blende Crystals
1.7.5 Spin–Orbit Interaction Hamiltonian
1.7.6 30–band kcdotp Method with the Spin–Orbit Interaction
1.8 Density of States
1.9 Problems
References
2 Cyclotron Resonance and Energy Band Structures
2.1 Cyclotron Resonance
2.2 Analysis of Valence Bands
2.3 Spin–Orbit Interaction
2.4 Non-parabolicity of the Conduction Band
2.5 Electron Motion in a Magnetic Field and Landau Levels
2.5.1 Landau Levels
2.5.2 Density of States and Inter Landau Level Transition
2.5.3 Landau Levels of a Non-parabolic Band
2.5.4 Effective g Factor
2.5.5 Landau Levels of the Valence Bands
2.5.6 Magneto–Optical Absorption
2.6 Luttinger Hamiltonian
2.7 Luttinger Parameters
2.8 Problems
References
3 Wannier Function and Effective Mass Approximation
3.1 Wannier Function
3.2 Effective-Mass Approximation
3.3 Shallow Impurity Levels
3.4 Impurity Levels in Ge and Si
3.4.1 Valley–Orbit Interaction
3.4.2 Central Cell Correction
3.5 Electron Motion Under an External Field
3.5.1 Group Velocity
3.5.2 Electron Motion Under an External Force
3.5.3 Electron Motion and Effective Mass
3.6 Problems
References
4 Optical Properties 1
4.1 Reflection and Absorption
4.2 Direct Transition and Absorption Coefficient
4.3 Joint Density of States
4.4 Indirect Transition
4.5 Exciton
4.5.1 Direct Exciton
4.5.2 Indirect Exciton
4.6 Dielectric Function
4.6.1 E0, E0+ Δ0 Edge
4.6.2 E1 and E1+Δ1 Edge
4.6.3 E2 Edge
4.6.4 Exciton
4.7 Piezobirefringence
4.7.1 Phenomenological Theory of Piezobirefringence
4.7.2 Deformation Potential Theory
4.7.3 Stress-Induced Change in Energy Band Structure
4.8 Problems
References
5 Optical Properties 2
5.1 Modulation Spectroscopy
5.1.1 Electro-optic Effect
5.1.2 Franz–Keldysh Effect
5.1.3 Modulation Spectroscopy
5.1.4 Theory of Electroreflectance and Third-Derivative Form of Aspnes
5.2 Raman Scattering
5.2.1 Selection Rule of Raman Scattering
5.2.2 Quantum Mechanical Theory of Raman Scattering
5.2.3 Resonant Raman Scattering
5.3 Brillouin Scattering
5.3.1 Scattering Angle
5.3.2 Brillouin Scattering Experiments
5.3.3 Resonant Brillouin Scattering
5.4 Polaritons
5.4.1 Phonon Polaritons
5.4.2 Exciton Polaritons
5.5 Free–Carrier Absorption and Plasmon
5.6 Problems
References
6 Electron–Phonon Interaction and Electron Transport
6.1 Lattice Vibrations
6.1.1 Acoustic Mode and Optical Mode
6.1.2 Harmonic Approximation
6.2 Boltzmann Transport Equation
6.2.1 Collision Term and Relaxation Time
6.2.2 Mobility and Electrical Conductivity
6.3 Scattering Probability and Transition Matrix Element
6.3.1 Transition Matrix Element
6.3.2 Deformation Potential Scattering (Acoustic Phonon Scattering)
6.3.3 Ionized Impurity Scattering
6.3.4 Piezoelectric Potential Scattering
6.3.5 Non–polar Optical Phonon Scattering
6.3.6 Polar Optical Phonon Scattering
6.3.7 Inter–Valley Phonon Scattering
6.3.8 Deformation Potential in Degenerate Bands
6.3.9 Theoretical Calculation of Deformation Potentials
6.3.10 Electron–Electron Interaction and Plasmon Scattering
6.3.11 Alloy Scattering
6.4 Scattering Rate and Relaxation Time
6.4.1 Acoustic Phonon Scattering
6.4.2 Non–polar Optical Phonon Scattering
6.4.3 Polar Optical Phonon Scattering
6.4.4 Piezoelectric Potential Scattering
6.4.5 Inter–Valley Phonon Scattering
6.4.6 Ionized Impurity Scattering
6.4.7 Neutral Impurity Scattering
6.4.8 Plasmon Scattering
6.4.9 Alloy Scattering
6.5 Mobility
6.5.1 Acoustic Phonon Scattering
6.5.2 Non–polar Optical Phonon Scattering
6.5.3 Polar Optical Phonon Scattering
6.5.4 Piezoelectric Potential Scattering
6.5.5 Inter–Valley Phonon Scattering
6.5.6 Ionized Impurity Scattering
6.5.7 Neutral Impurity Scattering
6.5.8 Plasmon Scattering
6.5.9 Alloy Scattering
6.6 Problems
References
7 Magnetotransport Phenomena
7.1 Phenomenological Theory of the Hall Effect
7.2 Magnetoresistance Effects
7.2.1 Theory of Magnetoresistance
7.2.2 General Solutions for a Weak Magnetic Field
7.2.3 Case of Scalar Effective Mass
7.2.4 Magnetoresistance
7.3 Shubnikov–de Haas Effect
7.3.1 Theory of Shubnikov–de Haas Effect
7.3.2 Longitudinal Magnetoresistance Configuration
7.3.3 Transverse Magnetoresistance Configuration
7.4 Magnetophonon Resonance
7.4.1 Experiments and Theory of Magnetophonon Resonance
7.4.2 Various Types of Magnetophonon Resonance
7.4.3 Magnetophonon Resonance Under High Electric and High Magnetic Fields
7.4.4 Polaron Effect
7.5 Problems
References
8 Quantum Structures 1
8.1 Historical Background
8.2 Two-Dimensional Electron Gas Systems
8.2.1 Two-Dimensional Electron Gas in MOS Inversion Layer
8.2.2 Quantum Wells and HEMT
8.3 Transport Phenomena of Two-Dimensional Electron Gas
8.3.1 Fundamental Equations
8.3.2 Acoustic Phonon Scattering and Non-Polar Optical Phonon Scattering
8.3.3 Inter-Valley Phonon Scattering
8.3.4 Polar Optical Phonon Scattering
8.3.5 Piezoelectric Potential Scattering
8.3.6 Ionized Impurity Scattering
8.3.7 Surface Roughness Scattering
8.3.8 Screening Effect
8.3.9 Remote Ionized Impurity Scattering
8.3.10 Mobility of a Two-Dimensional Electron Gas
8.4 Mesoscopic Phenomena
8.4.1 Mesoscopic Region
8.4.2 Definition of Mesoscopic Region
8.4.3 Landauer Formula and Büttiker–Landauer Formula
8.4.4 Research in the Mesoscopic Region
8.4.5 Aharonov–Bohm Effect (AB Effect)
8.4.6 Ballistic Electron Transport
8.5 Quantum Hall Effect
8.6 Problems
References
9 Quantum Structures 2
9.1 Superlattices
9.1.1 Kronig–Penney Model
9.1.2 Effect of Brillouin Zone Folding
9.1.3 Tight Binding Approximation
9.1.4 sp3sast Tight Binding Approximation
9.1.5 Energy Band Calculations for Superlattices
9.1.6 Second Nearest-Neighbor sp3 Tight Binding Approximation
9.2 Quantum Dots
9.2.1 Addition Energy
9.2.2 Exact Diagonalization Method
9.2.3 Hamiltonian for Electrons in a Quantum Dot
9.2.4 Diagonalization of N Electrons Hamiltonian Matrix
9.2.5 Electronic States in Quantum Dots
9.2.6 Quantum Dot States in Magnetic Field
9.2.7 Electronic States in Elliptic and Triangular Quantum Dots
9.3 Coulomb Blockade and Single Electron Transistor
9.4 Surface modulation of Two-dimensional Electron Gas and Weiss Oscillation
9.5 Wannier–Stark Effect in Superlattices
9.6 Bloch Oscillation
9.7 Problems
References
10 Light Emission and Laser
10.1 Einstein Coefficients A and B
10.2 Spontaneous Emission and Stimulated Emission
10.3 Band Tail Effect
10.4 Luminescence
10.4.1 Luminescence Due to Band to Band Transition
10.4.2 Luminescence Due to Excitons
10.4.3 Luminescence via Impurities
10.4.4 Luminescence in GaP and GaAsP via N Traps
10.4.5 Luminescence from GaInNAs
10.4.6 Light Emitting Diodes (LEDs) in Visible Region
10.5 Heterostructure Optical Waveguide
10.5.1 Wave Equations for Planar Waveguide
10.5.2 Transverse Electric Modes
10.5.3 Transverse Magnetic Modes
10.5.4 Effective Refractive Index
10.5.5 Confinement Factor
10.5.6 Laser Oscillations
10.6 Stimulated Emission in Quantum Well Structures
10.6.1 Confinement in Quantum Well
10.6.2 Optical Transition in Quantum Well Structures
10.6.3 Reduced Density of States and Gain
10.6.4 Strain Effect
10.6.5 Wurtzite Semiconductor Lasers
10.6.6 Optical Gain of Nitride Quantum Well Structures
10.7 Problems
References
11 Wade Bandgap Semiconductor and Photonic Crystals
11.1 Energy Band Structures of Nitrides
11.1.1 Energy Band Calculations of GaN, AlN, and InN
11.1.2 Energy Band Structures of Ternary Alloys
11.1.3 Spin–Orbit–Interaction and Valence Band Structures
11.2 Electron and Hole Mobilities of GaN
11.2.1 Acoustic Deformation Potential Scattering
11.2.2 Piezoelectric Potential Scattering
11.2.3 Ionized Impurity Scattering
11.2.4 Polar Optical Phonon Scattering
11.2.5 Remote Impurity Scattering
11.2.6 Other Scatterings
11.2.7 Evaluation of Electron and Hole Mobility
11.3 SiC and Other Semiconductors
11.3.1 SiC
11.3.2 Electron Mobility in 4H-SiC
11.4 Photonic Crystals
11.4.1 One-Dimensional Photonic Crystal
11.4.2 Two-Dimensional Photonic Crystal
11.4.3 Defects in Photonic Crystal
11.4.4 FDTD Method
11.5 Problems
References
12 Answers for Problems
Appendix A Delta Function and Fourier Transform
A.1 Dirac Delta Function
A.2 Cyclic Boundary Condition and Delta Function
A.3 Fourier Transform
Appendix B Gamma Function
Appendix C Uniaxial Stress and Strain Components in Cubic Crystals
Appendix D Boson Operators
Appendix E Random Phase Approximation and Lindhard Dielectric Function
Appendix F Density Matrix
Appendix G Spontaneous and Stimulated Emission Rates
Appendix H Spin–Orbit Interaction
References
Index




پست ها تصادفی