توضیحاتی در مورد کتاب Battery System Modeling
نام کتاب : Battery System Modeling
ویرایش : 1
عنوان ترجمه شده به فارسی : مدل سازی سیستم باتری
سری :
نویسندگان : Shunli Wang, Carlos Fernandez, Yu Chunmei, Fan Yongcun, Cao Wen, Daniel-Ioan Stroe, Zonghai Chen
ناشر : Elsevier
سال نشر : 2021
تعداد صفحات : 353
ISBN (شابک) : 0323904726 , 9780323904728
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 51 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
مدلسازی سیستم باتری پیشرفتهایی در مدلسازی باتریهای لیتیوم یونی فراهم میکند. این کتاب با ارائه توضیحات گام به گام، به طور سیستماتیک خواننده را از طریق مدلسازی برآورد وضعیت بار، پیشبینی انرژی، ارزیابی توان، تخمین سلامت و استراتژیهای کنترل فعال راهنمایی میکند. با استفاده از برنامه های کاربردی در کنار مطالعات موردی عملی، هر فصل به خواننده نشان می دهد که چگونه از ابزارهای مدل سازی ارائه شده استفاده کند. علاوه بر این، شیمی و ویژگیها به تفصیل با الگوریتمهای ارائهشده در هر فصل توضیح داده شدهاند. این کتاب با ارائه یک مرجع فنی در مورد طراحی و کاربرد سیستم های مدیریت باتری لیتیوم یون، مرجع ایده آلی برای محققانی است که در زمینه باتری ها و ذخیره سازی انرژی فعالیت می کنند.
علاوه بر این، راهنمای گام به گام و جامع است. معرفی موضوع، آن را برای مخاطبان همه سطوح، از مهندسان با تجربه گرفته تا فارغ التحصیلان، قابل دسترسی می کند.
فهرست مطالب :
Front Matter
Copyright
Contents
Chapter-1---Lithium-ion-battery-characteristics-and-_2021_Battery-System-Mod
Lithium-ion battery characteristics and applications
Introduction to lithium-ion battery technology
Development history
Energy storage technologies
Battery working mechanism
Characteristic analysis
Components and working principle
Lithium-ion battery construction
Charge-discharge strategies
Lithium-ion battery chemistries
Lithium-ion battery family
Battery with different materials
Solid-state lithium-ion battery
Comparative battery types analysis
Lithium-ion battery characteristics
Internal parameter relationship
Capacity characteristics
Open-circuit voltage
Internal resistance characteristic
Power capability variation
Coulombic efficiency
Battery aging behavior
Aging mechanisms
Calendar aging process
Temperature effect on aging process
Lithium-ion battery applications
Applications
System state estimation
Battery safety protection
Battery life guarantee
Status and trends
Conclusion
Acknowledgments
Conflict of interest
References
Chapter-2---Electrical-equivalent-circuit-modeli_2021_Battery-System-Modelin
Electrical equivalent circuit modeling
Modeling method overview
Modeling types and concepts
Comparative equivalent models
Commercial circuit models
Electrochemical model
Equivalent circuit model
Principle description
Modeling steps
Model selection
Parameter identification
Improved internal resistance modeling
Theoretical resistance modeling
Battery model establishment
Internal resistance description
Open-circuit voltage characteristics
Thevenin modeling
Construction of Thevenin model
Charge-discharge characteristics
State equation establishment
Mathematical description
High-order modeling
Second-order circuit modeling
Internal resistance description
Splice equivalent modeling
Parameter identification algorithms
Identification overview
Least-square functional fitting
Forgetting factor correction
Experimental analysis
Exponential curve fitting
Polynomial relationship description
Identified parameter variation
Pulse voltage tracking effect
Modeling accuracy verification
Conclusion
Acknowledgments
References
Conflict of interest
Chapter-3---Electrochemical-Nernst-modeling_2021_Battery-System-Modeling
Electrochemical Nernst modeling
Nernst modeling and improvement
Model building process
Parameter identification strategies
State-space description
Modeling realization
Simulation modeling structure
Characteristic description
Testing procedure design
Model parameter identification
Pulse current test logic
Parameter identification results
Curve fitting analysis
Simulation result analysis
Experimental verification
Characteristic testing
Pulse-power characteristic test
Varying condition voltage tracking
Modeling result and verification
Conclusion
Acknowledgments
Conflict of interest
References
Chapter-4---Battery-state-estimation-methods_2021_Battery-System-Modeling
Battery state estimation methods
State parameter identification
State-of-charge estimation
State-of-energy prediction
State-of-power evaluation
State-of-health determination
Remaining-useful-life prediction
Battery state influencing factors
Temperature influence
Charge-discharge current rate
Self-discharging description
Aging degree variation
Traditional state estimation methods
Algorithm comparison
Foundational methods
Kalman filtering extension
Particle filtering estimation
Machine learning algorithms
State of art introduction
Support vector machine
Self-learning neural network
Deep learning for life prediction
Conclusion
Acknowledgments
Conflict of interest
References
Chapter-5---Battery-state-of-charge-estimation-met_2021_Battery-System-Model
Battery state-of-charge estimation methods
Introduction
State-of-charge estimation methods
Calculation algorithm comparison
Coordinate transformation
Binary iterative algorithm
Extended Kalman filtering
Algorithm implementation
Unscented kalman filtering
Cubature Kalman filtering
Iterative calculation and modeling
Equivalent circuit modeling
Parameter identification
Kalman filtering algorithm
Extended Taylor series expansion
Estimation model construction
Iterative prediction and correction
Experimental result analysis
Pulse-power characteristic test
Estimation features and comparison
Thermal influencing effect
Time-varying condition influence
Complex current rate verification
Conclusion
Acknowledgments
Conflict of interest
References
Chapter-6---Battery-state-of-energy-prediction-met_2021_Battery-System-Model
Battery state-of-energy prediction methods
Overview
Iterative algorithm and realization
Equivalent modeling
Mathematical description
Iterative calculation procedure
Parameter initialization strategy
Estimation model construction
Improved prediction and correction
Cholesky decomposition
Calculation algorithm flow
Covariance matching
Improved correction strategy
Experimental results analysis
Parameter identification
Pulse-power characteristic test
Cyclic intermittent discharge
Packing pulse current test
Estimation processing effect
Conclusion
Acknowledgments
Conflict of interest
References
Chapter-7---Battery-state-of-power-evaluation-met_2021_Battery-System-Modeli
Battery state-of-power evaluation methods
State-space model construction
State estimation structural design
Algorithm overview
Iterative calculation
Calculation procedure design
Computing framework design
Iterative calculation steps
Algorithm improvement
Estimation modeling realization
Experimental analysis
Parameter identification results
State estimating and voltage tracking
Power-temperature variation
Main charge-discharge condition test
Pulse-current charge-discharge test
Conclusion
Acknowledgments
Conflict of interest
References
Chapter-8---Battery-state-of-health-estimation-met_2021_Battery-System-Model
Battery state-of-health estimation methods
Equivalent modeling and description
Equivalent circuit analysis
Mathematical state-space expression
Particle filtering algorithm
Bayesian estimation
Monte Carlo treatment
Importance sampling
Estimation modeling process
Equivalent circuit modeling
Calculation process design
Particle degradation expression
Resampling treatment
Whole life-cycle experiments
Experimental procedure design
Capacity variation for new batteries
Characteristic test for new batteries
Aging test for pulse-current cycles
Capacity variation for aged batteries
Characteristics test for aged batteries
Conclusion
Acknowledgments
Conflict of interest
References
Chapter-9---Battery-system-active-control-strateg_2021_Battery-System-Modeli
Battery system active control strategies
Overview of battery management systems
Research status
Classification and function
Control system design
Charging strategies for capacity extension
Constant-current constant-voltage
Multistage constant current
Pulse current charging
Sinusoidal ripple current
Experimental analysis
Balancing control methods
Inconsistency mechanism
State-of-balance description
Balance strategy classification
Passive equalization
Active balancing management
Temperature adjustment
Overview of thermal controlling
Air system circulation control
Liquid cooling and heating
Phase-change heat transfer
Heat pipe temperature control
Heatable thermal management
Thermal model
System construction and safety control
Overall structure design
Core factor measurement
System protection
Electrical interface connection
Experimental performance test
Conclusion
Acknowledgments
Conflict of interest
References
Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
W
Z
توضیحاتی در مورد کتاب به زبان اصلی :
Battery System Modeling provides advances on the modeling of lithium-ion batteries. Offering step-by-step explanations, the book systematically guides the reader through the modeling of state of charge estimation, energy prediction, power evaluation, health estimation, and active control strategies. Using applications alongside practical case studies, each chapter shows the reader how to use the modeling tools provided. Moreover, the chemistry and characteristics are described in detail, with algorithms provided in every chapter. Providing a technical reference on the design and application of Li-ion battery management systems, this book is an ideal reference for researchers involved in batteries and energy storage.
Moreover, the step-by-step guidance and comprehensive introduction to the topic makes it accessible to audiences of all levels, from experienced engineers to graduates.