توضیحاتی در مورد کتاب Big Data Analytics. 10th International Conference, BDA 2022 Hyderabad, India, December 19–22, 2022 Proceedings
نام کتاب : Big Data Analytics. 10th International Conference, BDA 2022 Hyderabad, India, December 19–22, 2022 Proceedings
عنوان ترجمه شده به فارسی : تجزیه و تحلیل داده های بزرگ دهمین کنفرانس بین المللی، BDA 2022 حیدرآباد، هند، 19 تا 22 دسامبر 2022 مجموعه مقالات
سری : Lecture Notes in Computer Science, 13773
نویسندگان : Partha Pratim Roy, Arvind Agarwal, Tianrui Li, P. Krishna Reddy, R. Uday Kiran
ناشر : Springer
سال نشر : 2022
تعداد صفحات : [282]
ISBN (شابک) : 9783031240935 , 9783031240942
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 15 Mb
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Preface
Organization
Contents
Big Data Analytics: Vision and Perspectives
Data Challenges and Societal Impacts – The Case in Favor of the Blueprint for an AI Bill of Rights (Keynote Remarks)
1 Introduction
2 Benefits of AI
3 AI Bias
3.1 Statistical Bias
3.2 Human and Systemic Bias
3.3 Beyond Bias - The Issue of Consent
4 A Framework to Build Trustworthiness
4.1 Technical Characteristics
4.2 Socio-Technical Characteristics
5 Conclusion
5.1 Need for Research
5.2 Need for Legislation
References
Big Data in Cognitive Neuroscience: Opportunities and Challenges
1 Introduction
1.1 Functional Segregation and Functional Integration
2 Inferential Approaches in Cognitive Neuroscience
3 Current Practices in Cognitive Neuroscience
4 Opportunities
5 Challenges
6 Conclusion
References
Data Science: Architectures
A Novel Feature Selection Based Text Classification Using Multi-layer ELM
1 Introduction
1.1 Research Motivation
1.2 Research Contribution
2 Prelims
2.1 Multi-layer ELM
3 Methodology
4 Analysis of Experimental Results
4.1 Experimental Setup
4.2 Discussion
4.3 Comparisons of ELM and ML-ELM Feature Space
5 Conclusion
References
ARCORE: A Requirements Dataset for Service Identification
1 Introduction
2 Related Work
2.1 Requirements Datasets:
2.2 Service Selection
2.3 Requirements Classifications
2.4 Techniques Used for Automatic Requirements Classification
3 ARCORE Dataset
3.1 Service Cues Creation
3.2 Validation and Annotation Guide Creation
3.3 Requirement Corpus Creation
3.4 ARCORE Dataset Creation
3.5 Sample Response Explanation
4 Conclusion and Future Work
References
Learning Enhancement Using Question-Answer Generation for e-Book Using Contrastive Fine-Tuned T5
1 Introduction
2 Background
3 Methodology
3.1 T5 - Abstractive Summarizer
3.2 Edu Question-Answer Generation (eQAG)
4 Experimental Results and Discussion
4.1 Dataset
4.2 Model Evaluation
4.3 Comparison with Baselines
4.4 Human Evaluation for Relevancy Testing
5 Conclusion and Future Scope
A BERT Score for Semantic Match
B Few More Examples of Generated QAs for Text Document
References
Data Science: Applications
A Machine and Deep Learning Framework to Retain Customers Based on Their Lifetime Value
1 Introduction
2 Related Work
3 Methodology
4 Design Specification
4.1 Customer Segmentation Models
4.2 Customer Lifetime Value Prediction Models
5 Implementation
6 Evaluation
6.1 Evaluation of Segmentation
6.2 Evaluation of Customer Lifetime Value Models
6.3 Discussion
7 Conclusion and Future Work
References
A Deep Learning Based Approach to Automate Clinical Coding of Electronic Health Records
1 Introduction
2 Related Work
3 Presented Automated Clinical Coding Models
3.1 ICD-9 Codes
3.2 Presented Models
3.3 Baseline Word2vec and Cosine Similarity Hybrid Model
3.4 Transformer Encoder Model Results
3.5 BERT Model (BlueBERT)
4 Experimental Analysis and Results
4.1 Used MIMIC-III Dataset
4.2 Evaluation Metrics
4.3 Implementation Details
4.4 Results and Analysis
5 Conclusion
References
Determining the Severity of Dementia Using Ensemble Learning
1 Introduction
2 Literature Review
3 Proposed Multi-phase Detection of Dementia
3.1 Phase 1 - Dementia Detection Using ADL Data
3.2 Phase 2 - Dementia Severity Prediction Using MRI Scans
3.3 Application of Random Forest Classifier in Phase 1 and 2 of Dementia Detection
4 Experimental Study
4.1 Analysis on Phase 1 Using ADL Data
4.2 Analysis of Phase 2 Using MRI Data
5 Conclusion
References
A Distributed Ensemble Machine Learning Technique for Emotion Classification from Vocal Cues
1 Introduction
2 Related Works
3 Proposed Framework
3.1 Dataset
3.2 Preprocessing
3.3 Feature Extraction and Reduction
3.4 Distributed Machine Learning Algorithms
4 Experimental Setup and Analysis
4.1 Results
5 Conclusion
References
Graph Analytics
Drugomics: Knowledge Graph & AI to Construct Physicians’ Brain Digital Twin to Prevent Drug Side-Effects and Patient Harm
1 Introduction
2 Drug-Drug Interaction (DDI) Knowledge Sources
3 Drug-Disease Interaction (DDSI) Knowledge Sources
4 Drugomics Knowledge Graph
5 Drugomics Use Case with Clinical Decision Support
5.1 Chief Complaints
5.2 Provisional Diagnosis
5.3 Prescription
5.4 Primary Diagnosis
5.5 Drugomics Interactions
6 Conclusion
References
Extremely Randomized Tree Based Sentiment Polarity Classification on Online Product Reviews
1 Introduction
2 Related Works
3 Methodology
3.1 Data Set
3.2 Text Pre-processing
3.3 Feature Extraction
3.4 Unigram Model
4 Classification
4.1 Ensemble Methods
4.2 Base Classifiers
4.3 Performance Evaluation Parameters
5 Result and Discussion
6 Conclusion
References
Community Detection in Large Directed Graphs
1 Introduction
2 Related Work
3 Our Approach
3.1 PageRank
3.2 Overall Algorithm Outline
3.3 Time Complexity
4 Experiments and Results
4.1 Nine-Level Communities
4.2 Community Coefficient and Community Size
4.3 Effect of PageRank Threshold k
4.4 Scalability Analysis
5 Conclusions
References
Pattern Mining
FastTIRP: Efficient Discovery of Time-Interval Related Patterns
1 Introduction
2 Problem Definition
3 The FastTIRP Algorithm
3.1 The Search Process
3.2 The Pair Support Pruning Technique
4 Experimental Evaluation
4.1 Influence of minsup on Runtime, Number of Joins and Patterns
4.2 Influence of minsup on the Overall Memory Usage
5 Conclusion
References
Discovering Top-k Periodic-Frequent Patterns in Very Large Temporal Databases
1 Introduction
2 Related Work
3 Proposed Model: top-k Periodic-Frequent Patterns
4 Our Algorithm
4.1 Basic Idea: Dynamic Maximum Periodicity
4.2 k-PFPMiner
5 Experimental Results
5.1 Experimental Setup
5.2 Evaluation of Algorithm by Varying only k
5.3 Scalability Test
6 Conclusions and Future Work
References
Hui2Vec: Learning Transaction Embedding Through High Utility Itemsets
1 Introduction
2 Related Work
3 Framework
3.1 Problem Definition
3.2 Learning Transaction Embeddings Based on Items
3.3 Learning Transaction Embedding Based on High Utility Itemsets
3.4 Hui2Vec Methods to Learn Transaction Embeddings
4 Experiments
4.1 Datasets
4.2 Implemented Models
4.3 Evaluation Metrics
4.4 Parameter Settings
4.5 Results and Discussion
5 Conclusion
References
Predictive Analytics in Agriculture
A Data-Driven, Farmer-Oriented Agricultural Crop Recommendation Engine (ACRE)
1 Introduction
1.1 Motivation for ACRE
1.2 Contributions and Outline
2 Review of Relevant Work
2.1 Relevant Work in Crop Recommendation Systems
2.2 Relevant Work in Crop Yield Prediction
2.3 Positioning of Our Work
3 Sharpe Ratio
4 Data Collection and Curation
4.1 Yield Data
4.2 Weather Data
4.3 Soil Data
5 Building Blocks of ACRE
5.1 Input Parameters
5.2 Utility Calculator
6 Experiments and Results
6.1 Crop Yield Prediction
6.2 Results on Profit Utilities
6.3 Recommendation of Individual Crops
6.4 Sharpe Ratio Based Crop Portfolio Recommendation
6.5 Socio-Cultural Factors in Crop Recommendation
7 Summary and Future Work
References
Analyze the Impact of Weather Parameters for Crop Yield Prediction Using Deep Learning
1 Introduction
2 Related Work
3 Dataset and Methods
3.1 Study Area
3.2 MODIS Image Datasets
3.3 Weather Data
3.4 Proposed Method
4 Result and Discussion
4.1 Model’s Performance
4.2 Comparison with Other Models
5 Conclusion
References
Analysis of Weather Condition Based Reuse Among Agromet Advisory: A Validation Study
1 Introduction
2 Materials and Methods
2.1 About Agromet Advisory Service
2.2 A CWC-based Reuse Framework
2.3 Methodology
2.4 Experimental Setup
3 Results and Discussion
3.1 Cluster Analysis of CWCs
3.2 Cluster Analysis of Advisory Data
3.3 Discussion
4 Conclusion
References
Author Index