Big Data Analytics. 10th International Conference, BDA 2022 Hyderabad, India, December 19–22, 2022 Proceedings

دانلود کتاب Big Data Analytics. 10th International Conference, BDA 2022 Hyderabad, India, December 19–22, 2022 Proceedings

44000 تومان موجود

کتاب تجزیه و تحلیل داده های بزرگ دهمین کنفرانس بین المللی، BDA 2022 حیدرآباد، هند، 19 تا 22 دسامبر 2022 مجموعه مقالات نسخه زبان اصلی

دانلود کتاب تجزیه و تحلیل داده های بزرگ دهمین کنفرانس بین المللی، BDA 2022 حیدرآباد، هند، 19 تا 22 دسامبر 2022 مجموعه مقالات بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد

این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 10


توضیحاتی در مورد کتاب Big Data Analytics. 10th International Conference, BDA 2022 Hyderabad, India, December 19–22, 2022 Proceedings

نام کتاب : Big Data Analytics. 10th International Conference, BDA 2022 Hyderabad, India, December 19–22, 2022 Proceedings
عنوان ترجمه شده به فارسی : تجزیه و تحلیل داده های بزرگ دهمین کنفرانس بین المللی، BDA 2022 حیدرآباد، هند، 19 تا 22 دسامبر 2022 مجموعه مقالات
سری : Lecture Notes in Computer Science, 13773
نویسندگان : , , , ,
ناشر : Springer
سال نشر : 2022
تعداد صفحات : [282]
ISBN (شابک) : 9783031240935 , 9783031240942
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 15 Mb



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Preface Organization Contents Big Data Analytics: Vision and Perspectives Data Challenges and Societal Impacts – The Case in Favor of the Blueprint for an AI Bill of Rights (Keynote Remarks) 1 Introduction 2 Benefits of AI 3 AI Bias 3.1 Statistical Bias 3.2 Human and Systemic Bias 3.3 Beyond Bias - The Issue of Consent 4 A Framework to Build Trustworthiness 4.1 Technical Characteristics 4.2 Socio-Technical Characteristics 5 Conclusion 5.1 Need for Research 5.2 Need for Legislation References Big Data in Cognitive Neuroscience: Opportunities and Challenges 1 Introduction 1.1 Functional Segregation and Functional Integration 2 Inferential Approaches in Cognitive Neuroscience 3 Current Practices in Cognitive Neuroscience 4 Opportunities 5 Challenges 6 Conclusion References Data Science: Architectures A Novel Feature Selection Based Text Classification Using Multi-layer ELM 1 Introduction 1.1 Research Motivation 1.2 Research Contribution 2 Prelims 2.1 Multi-layer ELM 3 Methodology 4 Analysis of Experimental Results 4.1 Experimental Setup 4.2 Discussion 4.3 Comparisons of ELM and ML-ELM Feature Space 5 Conclusion References ARCORE: A Requirements Dataset for Service Identification 1 Introduction 2 Related Work 2.1 Requirements Datasets: 2.2 Service Selection 2.3 Requirements Classifications 2.4 Techniques Used for Automatic Requirements Classification 3 ARCORE Dataset 3.1 Service Cues Creation 3.2 Validation and Annotation Guide Creation 3.3 Requirement Corpus Creation 3.4 ARCORE Dataset Creation 3.5 Sample Response Explanation 4 Conclusion and Future Work References Learning Enhancement Using Question-Answer Generation for e-Book Using Contrastive Fine-Tuned T5 1 Introduction 2 Background 3 Methodology 3.1 T5 - Abstractive Summarizer 3.2 Edu Question-Answer Generation (eQAG) 4 Experimental Results and Discussion 4.1 Dataset 4.2 Model Evaluation 4.3 Comparison with Baselines 4.4 Human Evaluation for Relevancy Testing 5 Conclusion and Future Scope A BERT Score for Semantic Match B Few More Examples of Generated QAs for Text Document References Data Science: Applications A Machine and Deep Learning Framework to Retain Customers Based on Their Lifetime Value 1 Introduction 2 Related Work 3 Methodology 4 Design Specification 4.1 Customer Segmentation Models 4.2 Customer Lifetime Value Prediction Models 5 Implementation 6 Evaluation 6.1 Evaluation of Segmentation 6.2 Evaluation of Customer Lifetime Value Models 6.3 Discussion 7 Conclusion and Future Work References A Deep Learning Based Approach to Automate Clinical Coding of Electronic Health Records 1 Introduction 2 Related Work 3 Presented Automated Clinical Coding Models 3.1 ICD-9 Codes 3.2 Presented Models 3.3 Baseline Word2vec and Cosine Similarity Hybrid Model 3.4 Transformer Encoder Model Results 3.5 BERT Model (BlueBERT) 4 Experimental Analysis and Results 4.1 Used MIMIC-III Dataset 4.2 Evaluation Metrics 4.3 Implementation Details 4.4 Results and Analysis 5 Conclusion References Determining the Severity of Dementia Using Ensemble Learning 1 Introduction 2 Literature Review 3 Proposed Multi-phase Detection of Dementia 3.1 Phase 1 - Dementia Detection Using ADL Data 3.2 Phase 2 - Dementia Severity Prediction Using MRI Scans 3.3 Application of Random Forest Classifier in Phase 1 and 2 of Dementia Detection 4 Experimental Study 4.1 Analysis on Phase 1 Using ADL Data 4.2 Analysis of Phase 2 Using MRI Data 5 Conclusion References A Distributed Ensemble Machine Learning Technique for Emotion Classification from Vocal Cues 1 Introduction 2 Related Works 3 Proposed Framework 3.1 Dataset 3.2 Preprocessing 3.3 Feature Extraction and Reduction 3.4 Distributed Machine Learning Algorithms 4 Experimental Setup and Analysis 4.1 Results 5 Conclusion References Graph Analytics Drugomics: Knowledge Graph & AI to Construct Physicians’ Brain Digital Twin to Prevent Drug Side-Effects and Patient Harm 1 Introduction 2 Drug-Drug Interaction (DDI) Knowledge Sources 3 Drug-Disease Interaction (DDSI) Knowledge Sources 4 Drugomics Knowledge Graph 5 Drugomics Use Case with Clinical Decision Support 5.1 Chief Complaints 5.2 Provisional Diagnosis 5.3 Prescription 5.4 Primary Diagnosis 5.5 Drugomics Interactions 6 Conclusion References Extremely Randomized Tree Based Sentiment Polarity Classification on Online Product Reviews 1 Introduction 2 Related Works 3 Methodology 3.1 Data Set 3.2 Text Pre-processing 3.3 Feature Extraction 3.4 Unigram Model 4 Classification 4.1 Ensemble Methods 4.2 Base Classifiers 4.3 Performance Evaluation Parameters 5 Result and Discussion 6 Conclusion References Community Detection in Large Directed Graphs 1 Introduction 2 Related Work 3 Our Approach 3.1 PageRank 3.2 Overall Algorithm Outline 3.3 Time Complexity 4 Experiments and Results 4.1 Nine-Level Communities 4.2 Community Coefficient and Community Size 4.3 Effect of PageRank Threshold k 4.4 Scalability Analysis 5 Conclusions References Pattern Mining FastTIRP: Efficient Discovery of Time-Interval Related Patterns 1 Introduction 2 Problem Definition 3 The FastTIRP Algorithm 3.1 The Search Process 3.2 The Pair Support Pruning Technique 4 Experimental Evaluation 4.1 Influence of minsup on Runtime, Number of Joins and Patterns 4.2 Influence of minsup on the Overall Memory Usage 5 Conclusion References Discovering Top-k Periodic-Frequent Patterns in Very Large Temporal Databases 1 Introduction 2 Related Work 3 Proposed Model: top-k Periodic-Frequent Patterns 4 Our Algorithm 4.1 Basic Idea: Dynamic Maximum Periodicity 4.2 k-PFPMiner 5 Experimental Results 5.1 Experimental Setup 5.2 Evaluation of Algorithm by Varying only k 5.3 Scalability Test 6 Conclusions and Future Work References Hui2Vec: Learning Transaction Embedding Through High Utility Itemsets 1 Introduction 2 Related Work 3 Framework 3.1 Problem Definition 3.2 Learning Transaction Embeddings Based on Items 3.3 Learning Transaction Embedding Based on High Utility Itemsets 3.4 Hui2Vec Methods to Learn Transaction Embeddings 4 Experiments 4.1 Datasets 4.2 Implemented Models 4.3 Evaluation Metrics 4.4 Parameter Settings 4.5 Results and Discussion 5 Conclusion References Predictive Analytics in Agriculture A Data-Driven, Farmer-Oriented Agricultural Crop Recommendation Engine (ACRE) 1 Introduction 1.1 Motivation for ACRE 1.2 Contributions and Outline 2 Review of Relevant Work 2.1 Relevant Work in Crop Recommendation Systems 2.2 Relevant Work in Crop Yield Prediction 2.3 Positioning of Our Work 3 Sharpe Ratio 4 Data Collection and Curation 4.1 Yield Data 4.2 Weather Data 4.3 Soil Data 5 Building Blocks of ACRE 5.1 Input Parameters 5.2 Utility Calculator 6 Experiments and Results 6.1 Crop Yield Prediction 6.2 Results on Profit Utilities 6.3 Recommendation of Individual Crops 6.4 Sharpe Ratio Based Crop Portfolio Recommendation 6.5 Socio-Cultural Factors in Crop Recommendation 7 Summary and Future Work References Analyze the Impact of Weather Parameters for Crop Yield Prediction Using Deep Learning 1 Introduction 2 Related Work 3 Dataset and Methods 3.1 Study Area 3.2 MODIS Image Datasets 3.3 Weather Data 3.4 Proposed Method 4 Result and Discussion 4.1 Model’s Performance 4.2 Comparison with Other Models 5 Conclusion References Analysis of Weather Condition Based Reuse Among Agromet Advisory: A Validation Study 1 Introduction 2 Materials and Methods 2.1 About Agromet Advisory Service 2.2 A CWC-based Reuse Framework 2.3 Methodology 2.4 Experimental Setup 3 Results and Discussion 3.1 Cluster Analysis of CWCs 3.2 Cluster Analysis of Advisory Data 3.3 Discussion 4 Conclusion References Author Index




پست ها تصادفی