توضیحاتی در مورد کتاب Bioactive Materials for Bone Regeneration
نام کتاب : Bioactive Materials for Bone Regeneration
ویرایش : 1
عنوان ترجمه شده به فارسی : مواد زیست فعال برای بازسازی استخوان
سری :
نویسندگان : Jiang Chang, Xingdong Zhang, Kerong Dai
ناشر : Academic Pr
سال نشر : 2019
تعداد صفحات : 241
ISBN (شابک) : 0128135034 , 9780128135037
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 16 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
مواد فعال زیستی برای بازسازی استخوان به طور خلاصه پیشرفت های تحقیق در مورد این موضوع ، از جمله بخش هایی در مورد ویژگی های ریز محیط زیست ناشی از بیولوژیکی ، تعامل مواد فعال زیستی با سلولهای بنیادی و بافت ها ، و میکرونینوم ایمنی بدن ناشی از بیوموژنتیالی و تأثیرات آن بر پوکی استخوان. از آنجا که بازسازی نقص بافت استخوان به اندازه بزرگ نشان دهنده یک چالش بالینی قابل توجه است ، این کتاب نشان می دهد که چگونه مواد زیستی جدید با خصوصیات شیمیایی و فیزیکی خاص ممکن است با میزبان تعامل داشته و یک محیط بی نظیر ایجاد کند که به طور فعال تمایز سلول های بنیادی را در امتداد یک اصل و نسب خاص تسهیل می کند. ، بنابراین بازسازی بافت را تحریک می کند.
- آخرین تحولات تحقیقاتی را در تکنیک های ساخت مواد فعال زیستی برای بازسازی بافت و کاربردهای مهندسی بافت به خوانندگان ارائه می دهد
- آخرین پیشرفت های تحقیقاتی در مورد چگونگی تعامل مواد فعال زیستی با آن ارائه می دهد میزبان و القاء محیط های میکرو برای تمایز سلولهای بنیادی ، سیستم ایمنی بدن و بازسازی بافت
- روشها ، استراتژی ها ، اصل و مکانیسم های مربوط به ساخت ریزگردهای بیولوژیکی مفید را پوشش می دهد
فهرست مطالب :
Bioactive Materials for Bone Regeneration
Copyright
Preface
1 - Material characteristics, surface/interface, and biological effects on the osteogenesis of bioactive materials
1.1. Fabrication methods of bioactive materials for bone regeneration
1.1.1 Material characteristics of bioactive materials for bone regeneration
1.1.1.1 Chemical composition
1.1.1.2 Porous structure
1.1.1.3 Surface micro- and nanostructure
1.1.2 Design of porous bioactive materials
1.1.2.1 Synthesis of initial nanopowder and precursor
1.1.2.2 Molding of porous structure
1.1.2.3 Sintering technologies
1.1.2.4 Surface modification methods
1.1.3 Main challenges and prospects
1.1.3.1 Main challenges of bioactive materials
1.1.3.2 Enhancing bioactivity and mechanical property methods
1.1.3.2.1 Bonelike apatite formation
1.1.3.2.2 Nanoscale topography
1.1.3.2.3 Whisker reinforcement
1.1.3.2.4 Trace ion doping
References
1.2. Surface micro-/nanostructure regulation of bioactive materials for osteogenesis
1.2.1 Surface morphology of bioactive materials for osteogenesis
1.2.1.1 Orderly micropatterned surface morphology of calcium phosphate–based bioceramics
1.2.1.2 Randomly structured surface morphology of calcium phosphate–based bioceramics
1.2.1.2.1 Hydrothermal treatment of randomly structured surface morphology
1.2.1.2.2 Simulated body fluid immersion and inducing of random calcium phosphate surface morphology
1.2.1.2.3 Other fabrication methods of randomly structured surface morphology
1.2.2 Porosity of bioactive porous materials for osteogenesis
1.2.3 Grain size of bioactive materials for osteogenesis
1.2.3.1 Microscale and submicroscale grain sizes
1.2.3.2 Nanoscale grain size
1.2.4 Summary
References
1.3. Protein adsorption on bioactive materials and its effect on osteogenesis
1.3.1 Current methods for studying protein adsorption
1.3.1.1 Experimental methods
1.3.1.2 Computing methods
1.3.2 Material factors influencing protein adsorption
1.3.2.1 Material factors
1.3.2.1.1 Topography
1.3.2.1.2 Chemical properties
1.3.2.1.3 Hydrophobicity
1.3.2.2 Interactions between proteins and bioactive materials
1.3.3 The effect of protein adsorption on the osteogenesis of bioactive materials
1.3.3.1 Extracellular protein adsorption
1.3.3.2 Adsorption of specific proteins (bone morphogenetic proteins and transcription growth factor beta)
1.3.3.3 Other growth factor adsorption
1.3.3.4 Cytokine adsorption
1.3.4 Summary
References
1.4. Osteogenesis induced by bioactive porous materials and the related molecular mechanism
1.4.1 Angiogenesis of bioactive materials and the involved molecular mechanism
1.4.2 Osteogenesis of bioactive materials and material-mediated mesenchymal stem cell function
1.4.2.1 Osteogenic ionic environment created in the porous structure
1.4.2.1.1 Ca2+ gradient
1.4.2.1.2 PO43− internalization
1.4.2.2 Cells of origin and cellular events in material-induced osteogenesis
1.4.2.2.1 Cells of origin
1.4.2.2.2 Events at cellular level
1.4.2.3 Osteogenic mechanism of bioactive porous titanium
1.4.3 Role of immunoresponse in the osteogenesis of bioactive materials
1.4.3.1 Autocrine effect of mesenchymal stem cells
1.4.3.2 Paracrine effect from immune cells
1.4.4 Summary
References
2 - Biomaterial-induced microenvironment and host reaction in bone regeneration
2.1 Bioactive inorganic ions for the manipulation ofosteoimmunomodulation to improve bone regeneration
2.1.1 Introduction
2.1.2 Application of bioactive ions in developing bone biomaterials and their possible application in manipulating osteoimmunomod ...
2.1.2.1 Strontium
2.1.2.2 Zinc
2.1.2.3 Magnesium
2.1.2.4 Calcium
2.1.2.5 Silicon
2.1.2.6 Cobalt
2.1.2.7 Copper
2.1.2.8 Europium
2.1.2.9 Fluorine
2.1.3 Combining bioactive elements to develop novel bone biomaterials with osteoimmunomodulatory properties as well as promote os ...
2.1.4 Summaries and future prospects
References
2.2 Silicate-based bone cements for hardtissue regeneration
2.2.1 Preparation of silicate-based bone cement
2.2.2 Self-setting properties and drug delivery performance of silicate-based bone cement
2.2.2.1 Setting time and mechanical strength
2.2.2.2 Injectability and washout resistance
2.2.2.3 Drug loading and release properties of silicate-based bone cements
2.2.3 In vitro and in vivo bioactivity and osteoinductivity of silicate-based bone cement
References
2.3 Trace elemente based biomaterials for osteochondral regeneration
2.3.1 Introduction
2.3.2 Biomaterials for osteochondral regeneration
2.3.2.1 The clinical need for osteochondral regeneration
2.3.2.2 The anatomy and properties of osteochondral tissue
2.3.2.3 Current strategies for osteochondral regeneration
2.3.2.4 Biomaterials for cartilage and bone regeneration
2.3.2.4.1 Biomaterials for cartilage regeneration
2.3.2.4.2 Biomaterials for bone regeneration
2.3.3 Trace element–based biomaterials for osteochondral regeneration
2.3.3.1 Manganese-doped biomaterials for osteochondral regeneration
2.3.3.2 Molybdenum-doped biomaterials for osteochondral regeneration
2.3.3.3 Lithium-based biomaterials for osteochondral regeneration
2.3.3.4 Strontium-based biomaterials for osteochondral regeneration
2.3.3.5 Other nutrient elements for osteochondral regeneration
2.3.4 Conclusions and perspectives
References
2.4 Bioactive ions for bone tissue engineering design
2.4.1 Introduction
2.4.2 Effects of bioactive ions on cell proliferation and stemness maintenance
2.4.3 Effects of bioactive ions on osteogenesis and osteoclastogenesis
2.4.4 Effects of bioactive ions on angiogenesis
2.4.5 Design of bioactive ion composite biomaterials for bone tissue engineering
2.4.6 Conclusions and perspectives
References
3 - A bone regeneration concept based on immune microenvironment regulation
3.1. Characteristics of the immune microenvironment in biomaterial-based regeneration
3.1.1 Immune response after biomaterial implantation
3.1.2 Macrophage in bone-relevant physiological and pathological processes
3.1.2.1 Initiating factors of macrophages: injury, protein absorption, danger signals, and polymorphonuclear leukocyte activation
3.1.2.2 Introduction of macrophages and foreign body giant cells
3.1.3 T cells and B cells in bone-relevant physiological and pathological processes
3.1.3.1 T lymphocyte activation and features of immunological function
3.1.3.2 B-lymphocyte response to antigens
3.1.4 Dendritic and natural killer cells in bone-relevant physiological and pathological processes
References
3.2. Biomaterials and their degradation products in the immune microenvironment and regeneration
3.2.1 Metallic implants, the immune microenvironment, and regeneration
3.2.1.1 Immune response to titanium implants
3.2.1.1.1 Macrophage role in immune response to titanium implants
3.2.1.1.2 T cell and dendritic cell roles in immune response to titanium implants
3.2.1.1.3 Influence of implant surface characteristics on immune response to titanium implants
3.2.1.1.4 Aseptic loosening in titanium implants
3.2.1.1.5 Immune response to cobalt–chromium alloy implants
3.2.1.1.6 Aseptic loosening in cobalt-chromium alloy implants
3.2.2 Inorganic materials implants, immune microenvironment, and regeneration
3.2.2.1 General immune response to bioceramic implants
3.2.2.2 Calcium phosphate ceramics in bone regeneration
3.2.2.2.1 Calcium ion immune microenvironment regulation through inflammation adjustment
3.2.2.2.2 Positive effects of phosphate ions on bone regeneration
3.2.2.3 Other ions that regulate the immune microenvironment
3.2.2.3.1 Silicon regulation of the immune microenvironment through macrophage inhibition
3.2.2.3.2 Positive effect of silicon on bone regeneration
3.2.2.3.3 Zinc regulation of the immune microenvironment through changes in tumor necrosis factor alpha and interleukin-1 beta levels
3.2.2.3.4 Magnesium regulation of the immune microenvironment by inhibition of the toll-like receptor pathway
3.2.2.3.5 Different immune responses to hydroxyapatite and strontium-doped calcium phosphate
3.2.2.4 Appropriate pore and particle sizes for influencing the immune microenvironment to strengthen bone regeneration
3.2.3 Organic materials implants, immune microenvironment, and regeneration
3.2.3.1 Immune response to ultra-high-molecular-weight polyethylene
3.2.3.2 Ultra-high-molecular-weight polyethylene particle activation of the inflammasome
3.2.3.3 Polylactic acid regulation of the immune microenvironment by macrophage
3.2.3.4 Polylactic acid degradation product influences on the microenvironment
3.2.3.5 Surface property regulation of the immune microenvironment
3.2.3.6 Topography property regulation of macrophage
3.2.3.7 Geometry property regulation of inflammation response
3.2.3.8 Delivering bioactive factors through polymers
References
3.3. Biomaterial research and development aim to produce a “good” bone immune microenvironment by regulating immune cell respons ...
3.3.1 Surface property regulation of immune-mediated osteogenesis
3.3.1.1 Topography
3.3.1.2 Charge
3.3.1.3 Hydrophilicity and hydrophobicity
3.3.2 Particle size regulation of immune-mediated osteogenesis
3.3.3 Microporosity regulation of immune-mediated osteogenesis
3.3.4 Ion regulation of immune-mediated osteogenesis
3.3.5 Summary and expectations
References
Index
A
B
C
D
E
F
G
H
I
L
M
N
O
P
Q
S
T
U
V
Z
توضیحاتی در مورد کتاب به زبان اصلی :
Bioactive Materials for Bone Regeneration summarizes research advances on the topic, including sections on the characteristics of biomaterial-induced microenvironments, interactions of bioactive materials with stem cells and tissues, and the immunomodulatory microenvironment induced by biomaterials and its effects on osteogenesis. As the regeneration of large-size bone tissue defects represents a significant clinical challenge, this book demonstrates how new biomaterials with specific chemical and physical characteristics may interact with the host and create a unique micro-environment that actively facilitates stem cell differentiation along a specific lineage, thus stimulating tissue regeneration.
- Provides readers with the latest research developments in the fabrication techniques of bioactive materials for tissue regeneration and tissue engineering applications
- Presents the latest research advancements on how bioactive materials interact with the host and induce micro-environments for stem cell differentiation, immunomodulation and tissue regeneration
- Covers the methods, strategies, principle and mechanisms on constructing beneficial biomaterial microenvironments