توضیحاتی در مورد کتاب Biocomposite Materials: Design and Mechanical Properties Characterization
نام کتاب : Biocomposite Materials: Design and Mechanical Properties Characterization
ویرایش : 1
عنوان ترجمه شده به فارسی : مواد بیوکامپوزیت: طراحی و خصوصیات مکانیکی
سری : Composites Science and Technology
نویسندگان : Mohamed Thariq Hameed Sultan, Mohd Shukry Abdul Majid, Mohd Ridzuan Mohd Jamir, Azwan Iskandar Azmi, Naheed Saba
ناشر : Springer
سال نشر : 2021
تعداد صفحات : 345
ISBN (شابک) : 9789813340909 , 9789813340916
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 17 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
این کتاب پیشرفتهای تحقیقاتی اخیر در طراحی بیوکامپوزیت، عملکرد مکانیکی و کاربرد را برجسته میکند. این مقاله رویکردهای تجربی نوآورانه را به همراه طرحهای مکانیکی و جنبههای ساخت کامپوزیتهای زمینه پلیمری فیبری مختلف مورد بحث قرار میدهد و نمونههایی از سنتز و توسعه بیوکامپوزیتها و کاربردهای آنها را ارائه میدهد. برای محققانی که مواد بیوکامپوزیت را برای کاربردهای زیست پزشکی و زیست محیطی توسعه می دهند مفید است.
فهرست مطالب :
Preface
Contents
About the Editors
Green Biocomposites for Packaging Applications
1 Introduction
2 Green Composites Formulations, Processing, Structure, and Final Properties
2.1 Towards Greener Composites
2.2 Polymer Matrices
2.3 Natural Fillers
3 Processing
4 Packaging Applications
4.1 Thermoplastic Green Biocomposites
4.2 Green Foam Biocomposites
4.3 Active Green Composite Films
4.4 3D Printing Composite Filaments
5 Environmental Impact Considerations
6 Conclusion and Future Perspective
References
Towards Sustainable Buildings with Free-Form Geometries: Development and Application of Flexible NFRP in Load-Bearing Structures
1 Introduction
2 Material Preparation
2.1 Material Lamination Process Through Veneering
3 Standards for Test Specimens Preparation
3.1 Bending Test
3.2 Tensile Test
4 Test Results and Discussion
4.1 Bending Test
4.2 Tensile Test
5 Potential Applications in Sustainable Building Structures
6 Conclusion
References
PLA Hybrid Composites Reinforced with Nanomaterials
1 Introduction
2 PLA Reinforced with Cellulosic Nanomaterials
3 PLA Reinforced with Nanofibers from Bacteria
4 PLA Composites Reinforced with Chitin-Based Nanomaterials
5 PLA Containing Starch-Based Nanomaterials
6 Nanoclay Reinforced PLA Composites
7 Protein Compatibilized PLA Nanocomposites
8 Conclusions and Future Perspectives
References
Effect of Cellulose Nanocrystals on the Mechanical Properties of Polymeric Composites
1 Cellulose Background
2 Nanocellulose
2.1 Advantages at the Nanoscale
2.2 Classes of Nanocellulose
2.3 Cellulose Nanocrystals
2.4 CNC Commercial Production
3 Sources of CNCs
3.1 Plants
3.2 Tunicates
3.3 Other Sources
4 Composites
4.1 Mechanical Reinforcement of CNCs in Polymeric Nanocomposites
4.2 Nanocomposites Based on Plant Sourced CNCs
4.3 Nanocomposites Based on Tunicate Sourced CNCs
4.4 Hybrid Nanocomposites comprised of Multiple CNC Sources
5 Effect of Morphology on Mechanical Performance
6 Conclusion and Future Perspective
References
Lignocellulosic Fiber-Reinforced PLA Green Composites: Effects of Chemical Fiber Treatment
1 Introduction
2 PLA Synthesis Methods and Properties
2.1 PLA Synthesis
2.2 PLA Properties
3 Lignocellulosic Fibers as Reinforcement Agents
3.1 Cellulose
3.2 Hemicellulose
3.3 Lignin
3.4 Other Components
4 Lignocellulosic Fiber-Reinforced PLA Composites: Pros and Cons
5 Fiber Treatment Methods
5.1 Alkali Treatment
5.2 Organosilane Treatment
5.3 Esterification Treatment
5.4 Bleaching Treatment
5.5 Etherification Treatment
5.6 Graft Copolymerization
5.7 Acid Hydrolysis Treatment
5.8 Isocyanate Treatment
5.9 Peroxide Treatment
5.10 Permanganate Treatment
5.11 Acrylation Treatment
5.12 Modifications Based on Eco-Friendly Chemicals
6 Conclusion and Future Perspective
References
3D Printing of Continuous Natural Fibre Reinforced Biocomposites for Structural Applications
1 Introduction
2 Classification of Short, Long and Continuous Natural Fibers Biocomposites
3 Continuous Natural Fibers Composites by Additive Manufacturing
4 Additive Manufacturing: Continuous Natural Fiber Reinforced Composites
4.1 Fused Deposition Modeling (FDM) in the Natural Fibers-Reinforced Composite
4.2 Selective Laser Sintering (SLS) in Continuous Natural Fibers-Reinforced Composite
4.3 Stereolithography (SLA) in Continuous Natural Fibers Composite
4.4 Direct Ink Writing Technology in Developing Continuous Fiber Reinforced Composite
5 3D Printed Components in Structural Application
6 Conclusion
References
Manufacturing Defects in Natural Fibre Composites
1 Introduction
2 Manufacturing Defects
3 Voids
4 Resin-rich Zones
5 Pockets of Undispersed Cross-Linker
6 Misalignment of Fibres
7 Incomplete Cure of Fibres-Matrix
7.1 Distribution of Curing Agents
7.2 Premature Curing
8 Conclusion
References
Carbon-Based Materials Reinforced Ultrahigh Molecular Weight Polyethylene and Biocomposites
1 Introduction
2 UHMWPE Biocomposites for Joint Replacement
3 Graphitic Nanomaterials as Filler
4 Biomaterial Properties of Graphite Flakes and Graphene Oxide
4.1 Biocompatibility
4.2 Thermal Conductivity
4.3 Nucleation Promoter
4.4 Hydrophilicity
5 UHMWPE Composite Fabrication Process
6 Concluding Remarks and Future Perspective
References
Water Absorption Properties of Natural Fibres Reinforced PLA Bio-Composite
1 Introduction
2 Natural Fiber
2.1 Composition of Natural Fiber
2.2 Properties of Natural Fiber
2.3 Hydrophilic of Natural Fiber
2.4 Fiber-Matrix Interface
2.5 Treatment of Natural Fiber
3 Polylactic Acid (PLA)
3.1 Structure and Properties of PLA
3.2 Synthesis of PLA
4 Natural Fiber Reinforced PLA Bio-Composite
5 Water Absorption Properties of Natural Fiber Reinforced PLA Bio-Composite
5.1 Sorption Mechanism
5.2 Water Absorption Behaviour of Natural Fiber Reinforced PLA Bio-Composite
References
Characterization of the Time of Phytosanitary Treatment of Frozen or Unfrozen Wood by Microwaves
1 Introduction
2 General Considerations
3 Thermal Properties of Wood
4 Complex Dielectric Properties of Wood
5 Enthalpy Model for Heating of Orthotropic Media
5.1 Implicit Time Integration Scheme
6 Electromagnetic-Wave Energy and Poynting’s Theorem
6.1 Maxwell’s Equations and Power Dissipation
6.2 The Case of Anisotropic Dielectric Materials
6.3 Uniform Plane Wave Propagation and Power Dissipation
7 Validation of the Proposed Method
7.1 Numerical Heating Validation
7.2 Analytical Heat Transfer in an Orthotropic Plate: Imposed Temperatures
7.3 Experimental Heating Validation: Transient Heating of Frozen Logs
8 Numerical Application: Characterization of the Time of Phytosanitary Treatment Wood by Microwaves
9 Conclusion
Appendix
Electric Field in Parallel with One of the Three Principal Directions of the Wood
References
Synthesis, Characterization, in Vitro Biocompatibility and Antibacterial Properties Study of Nanocomposite Materials
1 Nanocomposites
1.1 Metal Matrix Nano Composites (MMNC)
1.2 Ceramic Matrix Nano Composites (CMNC)
1.3 Polymer Matrix Nano Composites (PMNC)
2 Synthesis of Nanocomposites
2.1 Mechanical Technique
2.2 Enzymatic and Chemical Treatment Technique
3 Characterization of Nanocomposites
3.1 Surface Analysis
3.2 Fourier Transform Infrared Nanomaterials (FTIR)
3.3 Photoluminescence (PL) Spectroscopy
3.4 Electron Microscopy
4 In Vitro Biocompability of Nanocomposites
5 Antibacteria Properties of Nanocomposites
5.1 Diffusion Method
5.2 Dilution Method
6 Conclusion
References
Enhancement of Local Drug Delivery System Using Different Design of Gentamicin Loaded in Carbonate Apatite Scaffold
1 Introduction
2 Materials and Methods
2.1 Materials
3 Methods
3.1 Fabrication of GEN Loaded PLA Microsphere
3.2 Fabrication of GEN Loaded PLA Microsphere
3.3 Incorporation GEN into Carbonate Apatite Scaffold
3.4 Process on CO3Ap Scaffold with GEN and GENMS in CS Solution
4 Characterizations
4.1 Scanning Electron Microscope
4.2 Bioactivity Test
4.3 In Vitro Cell Proliferation
4.4 Drug Release Test in Vitro
4.5 Degradation Rate
4.6 Drug Release Kinetics
5 Results and Discussion
5.1 GEN-Loaded PLA Microsphere, Encapsulation Efficiency and Microstructures
5.2 Bioactivity Evaluation
6 Drug Release Profile and Kinetics Mechanism
7 Cell Proliferation
8 Conclusion
References
توضیحاتی در مورد کتاب به زبان اصلی :
The book highlights the recent research developments in biocomposite design, mechanical performance and utility. It discusses innovative experimental approaches along with mechanical designs and manufacturing aspects of various fibrous polymer matrix composites and presents examples of the synthesis and development of biocomposites and their applications. It is useful for researchers developing biocomposite materials for biomedical and environmental applications.