Bioinspired Optimization Methods and Their Applications. 10th International Conference, BIOMA 2022 Maribor, Slovenia, November 17–18, 2022 Proceedings

دانلود کتاب Bioinspired Optimization Methods and Their Applications. 10th International Conference, BIOMA 2022 Maribor, Slovenia, November 17–18, 2022 Proceedings

51000 تومان موجود

کتاب روش‌های بهینه‌سازی با الهام از زیست و کاربردهای آنها. دهمین کنفرانس بین المللی، BIOMA 2022 ماریبور، اسلوونی، 17-18 نوامبر 2022 مجموعه مقالات نسخه زبان اصلی

دانلود کتاب روش‌های بهینه‌سازی با الهام از زیست و کاربردهای آنها. دهمین کنفرانس بین المللی، BIOMA 2022 ماریبور، اسلوونی، 17-18 نوامبر 2022 مجموعه مقالات بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد

این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 3


توضیحاتی در مورد کتاب Bioinspired Optimization Methods and Their Applications. 10th International Conference, BIOMA 2022 Maribor, Slovenia, November 17–18, 2022 Proceedings

نام کتاب : Bioinspired Optimization Methods and Their Applications. 10th International Conference, BIOMA 2022 Maribor, Slovenia, November 17–18, 2022 Proceedings
عنوان ترجمه شده به فارسی : روش‌های بهینه‌سازی با الهام از زیست و کاربردهای آنها. دهمین کنفرانس بین المللی، BIOMA 2022 ماریبور، اسلوونی، 17-18 نوامبر 2022 مجموعه مقالات
سری : Lecture Notes in Computer Science, 13627
نویسندگان : , ,
ناشر : Springer
سال نشر : 2022
تعداد صفحات : 288
ISBN (شابک) : 9783031210938 , 9783031210945
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 19 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Preface
Organization
Contents
An Agent-Based Model to Investigate Different Behaviours in a Crowd Simulation
1 Introduction
2 The Mathematical Model
3 NetLogo Model
4 Experimental Results
5 Conclusions and Future Works
References
Accelerating Evolutionary Neural Architecture Search for Remaining Useful Life Prediction
1 Introduction
2 Background
3 Method
3.1 Multi-objective Optimization
3.2 Speeding up Evaluation
4 Experimental Setup
4.1 Computational Setup and Benchmark Dataset
4.2 Data Preparation and Training Details
5 Results
6 Conclusions
References
ACOCaRS: Ant Colony Optimization Algorithm for Traveling Car Renter Problem
1 Introduction
2 Related Work
3 Problem Description
4 ACOCaRS Algorithm
5 Experiment
5.1 Testbed
5.2 Results
6 Discussion
7 Conclusion and Future Work
References
A New Type of Anomaly Detection Problem in Dynamic Graphs: An Ant Colony Optimization Approach
1 Introduction
2 Anomaly Detection Problem
3 Proposed Approach
4 Numerical Experiments
4.1 Benchmarks
4.2 Parameter Setting
4.3 Anomaly Detection in Real-World Networks
5 Conclusion and Further Work
References
.28em plus .1em minus .1emCSS–A Cheap-Surrogate-Based Selection Operator for Multi-objective Optimization
1 Introduction
2 Background
2.1 Spherical Search
2.2 Cheap Surrogate Selection (CSS)
3 Proposed Method
3.1 General Framework of CSS-MOEA
3.2 The Detailed Process of CSS-MOEA
4 Experiment Results
5 Conclusion
References
Empirical Similarity Measure for Metaheuristics
1 Introduction
2 Related Works
3 Preliminaries
3.1 Metaheuristic Algorithms
3.2 Benchmark Functions
3.3 Parameter Tuning
4 Proposed Comparison Method
4.1 Algorithm Instances
4.2 Algorithm Profiling
4.3 Measuring Similarity
5 Results
5.1 Comparing Instances of the Same Algorithm
5.2 Comparing Instances of the Same Tuning Function
5.3 Clustering the Algorithms\' Instances Based on Similarity
5.4 Discussion
6 Conclusion
References
Evaluation of Parallel Hierarchical Differential Evolution for Min-Max Optimization Problems Using SciPy
1 Introduction
2 Definition of the Problem
3 Differential Evolution for MinMax Problems
3.1 Overview of Differential Evolution
3.2 Hierarchical (Nested) Differential Evolution and Parallel Model
4 Experimental Setup and Results
4.1 Benchmark Test Functions
4.2 Parameter Settings
4.3 Results and Discussion
5 Conclusion and Future Work
References
Explaining Differential Evolution Performance Through Problem Landscape Characteristics
1 Introduction
2 Related Work
3 Experimental Setup
3.1 Benchmark Problem Portfolio
3.2 Landscape Data
3.3 Algorithm Portfolio
3.4 Performance Data
3.5 Regression Models
3.6 Leave-One Instance Out Validation
3.7 SHAP Explanations
4 Results and Discussion
4.1 Optimization Algorithms Performance
4.2 Performance Prediction
4.3 Linking ELA Features to DE Performance
5 Conclusions
References
Genetic Improvement of TCP Congestion Avoidance
1 Introduction
2 Background
3 Related Works
4 Method
4.1 Code Simplification Procedure
5 Experimental Results
6 Conclusions and Future Work
References
Hybrid Acquisition Processes in Surrogate-Based Optimization. Application to Covid-19 Contact Reduction
1 Introduction
2 Background on Surrogate-Based Optimization
3 COVID-19 Contact Reduction Problem
4 Hybrid Acquisition Processes
5 Experiments
6 Conclusion
References
Investigating the Impact of Independent Rule Fitnesses in a Learning Classifier System
1 Introduction
2 Related Work
3 The Supervised Rule-Based Learning System
4 Evaluation
4.1 Experiment Design
4.2 Results
5 Conclusion
References
Modified Football Game Algorithm for Multimodal Optimization of Test Task Scheduling Problems Using Normalized Factor Random Key Encoding Scheme
1 Introduction
2 Problem Description and Mathematical Modeling
3 The Proposed Modified Football Game Algorithm (mFGA)
3.1 Classic FGA
3.2 Modified FGA
4 Normalized Factor Random Key Encoding Scheme
5 Multimodal Single-Objective Optimization of TTSP
6 Comparison and Discussion
7 Conclusion and Future Works
References
Performance Analysis of Selected Evolutionary Algorithms on Different Benchmark Functions
1 Introduction
2 Related Work
3 Experiment
3.1 CEC 2022 Single Objective Bound Constrained Numerical Optimization
3.2 CEC 2021 Single Objective Bound Constrained Optimization
3.3 CEC 2017 Single Objective Bound Constrained Optimization
4 Discussion
5 Conclusion
References
Refining Mutation Variants in Cartesian Genetic Programming
1 Introduction
2 Related Work
3 Cartesian Genetic Programming
3.1 Introduction to Cartesian Genetic Programming
3.2 Mutation Algorithm
4 Further Changes in the Mutation Algorithm
4.1 Probabilistic Mutation
4.2 Single and Multiple Mutation
5 Preliminaries
5.1 Experiment Description
5.2 Datasets
6 Experiments
6.1 Impact of Different Probabilistic Mutation Strategies
6.2 Impact of Multi-n and DMulti-n
7 Conclusion
References
Slime Mould Algorithm: An Experimental Study of Nature-Inspired Optimiser
1 Introduction
1.1 Slime Mould Algorithm
1.2 Previous Works
2 Newly Proposed Variants of SMA
2.1 Linear Reduction of the Population Size
2.2 Eigen Transformation
2.3 Perturbation
2.4 Adaptation of Parameter z
3 Methods Used in Experiments
4 Experimental Settings
5 Results
6 Conclusion
References
SMOTE Inspired Extension for Differential Evolution
1 Introduction
2 Background
2.1 Differential Evolution
2.2 Synthetic Minority Oversampling Technique (SMOTE)
2.3 Literature Overview
3 Proposed Mechanism for Differential Evolution
4 Experimental Analysis
4.1 Setup
4.2 Comparison Against Other Mechanisms
4.3 Incorporation into Improved Algorithm Variants
5 Conclusion
References
The Influence of Local Search on Genetic Algorithms with Balanced Representations
1 Introduction
2 Background
2.1 Balanced Crossover Operators
2.2 Boolean Functions
3 Local Search of Boolean Functions
4 Experiments
4.1 Experimental Setting
4.2 Results
4.3 Discussion
5 Conclusions
References
Trade-Off of Networks on Weighted Space Analyzed via a Method Mimicking Human Walking Track Superposition
1 Introduction and Related Work
2 Simulation Model of WTSN on Weighted Space
2.1 Generation Process of WTSN on a Mixture of Different Ground Conditions
2.2 Pareto-Optimal Path Between Two Demand Vertices
2.3 Algorithm for WTSN on Weighted Space
3 Analysis of Differences in Pareto Frontier by Weighted Space
3.1 Experimental Spaces Setting
3.2 Result of Pareto Frontier Approximation
4 Discussion
5 Conclusion and Further Work
References
Towards Interpretable Policies in Multi-agent Reinforcement Learning Tasks
1 Introduction
2 Related Work
3 Method
3.1 Creation of the Teams
3.2 Fitness Evaluation
3.3 Individual Encoding
3.4 Operators
4 Experimental Setup
4.1 Environment
4.2 Parameters
5 Experimental Results
5.1 Interpretation
5.2 Comparison with a Non Co-Evolutionary Approach
6 Conclusions and Future Works
References
Author Index




پست ها تصادفی