Biomechanics of the Female Reproductive System: Breast and Pelvic Organs: From Model to Patient (Biomechanics of Living Organs)

دانلود کتاب Biomechanics of the Female Reproductive System: Breast and Pelvic Organs: From Model to Patient (Biomechanics of Living Organs)

33000 تومان موجود

کتاب بیومکانیک دستگاه تناسلی زن: سینه و اندام های لگن: از مدل تا بیمار (بیومکانیک اندام های زنده) نسخه زبان اصلی

دانلود کتاب بیومکانیک دستگاه تناسلی زن: سینه و اندام های لگن: از مدل تا بیمار (بیومکانیک اندام های زنده) بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 8


توضیحاتی در مورد کتاب Biomechanics of the Female Reproductive System: Breast and Pelvic Organs: From Model to Patient (Biomechanics of Living Organs)

نام کتاب : Biomechanics of the Female Reproductive System: Breast and Pelvic Organs: From Model to Patient (Biomechanics of Living Organs)
ویرایش : 1
عنوان ترجمه شده به فارسی : بیومکانیک دستگاه تناسلی زن: سینه و اندام های لگن: از مدل تا بیمار (بیومکانیک اندام های زنده)
سری :
نویسندگان : , ,
ناشر : Academic Press
سال نشر : 2023
تعداد صفحات : 534
ISBN (شابک) : 0323903193 , 9780323903196
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 19 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Front Cover
Biomechanics of the Female Reproductive System: Breast and Pelvic Organs
Copyright
Contents
Contributors
Editor\'s biography of 2022
Foreward
Preface
Note of the series editors
Part 1 Backgrounds: anatomy, physiology, and physio-pathology
1 Pelvic floor functional anatomy
1.1 Overview
1.2 Levator ani
1.2.1 Levator ani muscle and its three subdivisions
1.2.1.1 Overall anatomy of the levator ani muscle
1.2.2 Levator ani lines of action
1.2.2.1 Hiatal closure and the perineal complex
1.2.2.2 Perineal membrane
1.2.3 Levator ani muscle injury
1.2.3.1 Levator ani muscle injury associated with prolapse
1.2.3.2 How does childbirth cause injury?
1.3 Connective tissue supports of the pelvic organs
1.3.1 Overview
1.3.2 Apical supports: Level I
1.3.2.1 Cardinal and uterosacral ligaments
1.3.2.2 Tissue composition of cardinal and uterosacral ligaments
1.3.2.3 Ligament geometry
1.3.2.4 Ligament changes with prolapse
1.3.3 Anterior compartment: Level II
1.3.3.1 Fascial and levator arches
1.3.3.2 Alteration in pelvic sidewall anatomy due to injury
1.3.4 Anterior compartment: Level III
1.3.5 Structural failure sites in anterior vaginal wall prolapse
1.3.6 Anatomy and structural failure sites in posterior compartment prolapse
1.3.6.1 Anatomy of the posterior vaginal wall support as it applies to rectocele
1.3.6.2 How does posterior vaginal wall support fail?
References
2 Epidemiology & pathophysiology of pelvic organ prolapse & urinary incontinence in women
2.1 Epidemiology of pelvic organ prolapse
2.1.1 Prevalence & incidence
2.1.2 Risk factors
2.1.2.1 Age & obesity
2.1.2.2 Race & ethnicity
2.1.2.3 Childbirth, parity & mode of delivery
2.1.2.4 Hysterectomy
2.2 Pathophysiology of pelvic organ prolapse
2.2.1 Anatomical structure, support & function
2.2.1.1 Pelvic floor anatomy & supports
2.2.1.1.1 Levator ani
2.2.1.1.2 Arcus tendineus levator ani & fascia pelvis
2.2.1.1.3 Perineal membrane (urogenital diaphragm)
2.2.1.1.4 Perineal body
2.2.1.1.5 Uterosacral-cardinal ligament complex
2.2.1.2 Pelvic floor support mechanisms
2.2.2 Physiological mechanisms of POP
2.2.2.1 Pelvic floor defects
2.2.2.2 The integral theory
2.2.2.3 Changes in collagen & smooth muscle of the vagina & supportive tissues
2.2.2.4 Age & obesity
2.2.2.5 Pregnancy, parity, & postpartum pelvic floor muscle trauma
2.2.3 Clinical diagnosis & evaluation
2.2.4 Treatment & management
2.3 Epidemiology of urinary incontinence
2.3.1 Prevalence, incidence, & remission
2.3.2 Risk factors
2.3.2.1 Age & obesity
2.3.2.2 Race
2.3.2.3 Pregnancy, parity & mode of delivery
2.3.2.4 Hysterectomy
2.4 Pathophysiology of urinary incontinence
2.4.1 Anatomical structure, support & function
2.4.1.1 Lower urinary tract anatomy & supports
2.4.1.1.1 Urinary bladder
2.4.1.1.2 Urethra
2.4.1.1.3 Pelvic floor muscles & the external urethral sphincter
2.4.1.2 Lower urinary tract function
2.4.1.2.1 The female urethral sphincter mechanism
2.4.2 Physiological mechanisms of UI
2.4.2.1 Stress UI
2.4.2.1.1 Urethral hypermobility
2.4.2.1.2 Intrinsic sphincter deficiency
2.4.2.2 Urge UI
2.4.2.2.1 Detrusor overactivity
2.4.2.3 Mixed UI
2.4.2.4 Overflow incontinence
2.4.3 Clinical diagnosis & evaluation
2.4.4 Treatment & management
References
3 Current surgical treatments for women\'s genital prolapse
3.1 Introduction
3.2 Signs and symptoms of genital prolapse
3.3 Surgical indications and alternative treatments
3.3.1 Pelvic floor physiotherapy
3.3.2 Pessaries
3.3.3 Surgery
3.4 Surgical techniques
3.4.1 Pelvic floor support
3.4.2 General surgical principles
3.4.3 Apical suspensions
3.4.3.1 Sacrocolpopexy
3.4.3.2 Uterosacral ligaments suspension
3.4.3.3 Sacrospinous ligament suspension
3.4.4 Level 2 suspensions
3.4.5 Restauration of organ support: level 3
3.4.5.1 Anterior prolapses (cystoceles)
3.4.5.2 Posterior prolapses (rectoceles)
3.4.6 Obliterative procedures
3.4.7 Autologous vs synthetic mesh
3.5 Surgical strategies
3.6 Mechanical consequences of the different management options
3.6.1 Expectant management
3.6.2 Autologous surgeries
3.6.2.1 Suspensions
3.6.2.2 Plications
3.6.2.3 Colpectomy
3.6.3 Mesh surgery
4 Physiology and physiopathology of pregnancy and delivery
4.1 Introduction
4.2 Changes in biomechanical intrinsic characteristics during pregnancy
4.2.1 Changes in joint mobility in women
4.2.2 Changes in spinal curve in women
4.2.3 Change in pelvic organ mobility
4.2.3.1 Clinical considerations
4.2.3.2 Ultrasound considerations
4.3 Pathophysiological process
4.3.1 Hormonal considerations
4.3.2 Conjunctive tissue\'s remodeling
4.3.3 Data from animal experimentation
4.4 Association with the mode of delivery and the risk of perineal trauma at childbirth
4.4.1 Mode of delivery
4.4.2 Perineal trauma
4.5 Biomechanics of spontaneous normal delivery
4.5.1 Delivery of the head
4.5.2 Delivery of the shoulder
4.6 Peripartum biomechanical considerations
4.6.1 Physiological changes
4.6.1.1 Hormonal changes
4.6.1.2 Changes to muscles and connective tissue
4.6.2 Powers
4.6.2.1 Contractions
4.6.2.2 Maternal pushing
4.6.2.3 Fundal pressure
4.6.3 Passages
4.6.3.1 Type of pelvis
4.6.3.2 Birth canal
4.6.4 Passenger
4.6.4.1 Fetal size
4.6.4.2 Malpositions and malpresentations
4.6.4.3 Fetal head shape
4.6.5 Birth position
4.6.6 Practitioner
4.6.6.1 Manual perineal protection
4.6.6.2 Operative vaginal delivery
4.6.6.3 Other interventions
4.6.6.4 Shoulder delivery
4.7 Model development, testing, and validation
4.8 Conclusion
4.9 List of Abreviations
References
Part 2 Mechanical properties – constitutive laws – experimental characterizations
5 Inverse problems in the characterization of soft connective tissue: perspective for reproduction system
5.1 Introduction
5.2 Common sources of inverse problem in soft tissue biomechanics
5.2.1 Elastography of soft tissue biomechanics
5.2.1.1 Subject the tissues to a deformation
5.2.1.2 Measure the displacement fields
5.2.1.3 Compute the mechanical properties
5.2.1.4 Applications in the pelvic system
5.2.2 Nondestructive invasive techniques
5.2.3 Nonagreed standard testing of soft tissue biomechanics
5.3 The finite element model updating method
5.3.1 Useful definitions and concepts
5.3.1.1 Deformation tensors
5.3.1.2 Stress tensors
5.3.1.3 Constitutive equations
5.3.2 Forward problem
5.3.2.1 Strong form
5.3.2.2 Weak form
5.3.3 Inverse problem
5.3.3.1 Definition of the cost function
5.3.3.2 The adjoint method
5.3.3.3 Minimization of the cost function and resolution of the inverse problem
5.3.4 Applications to the pelvic system
5.4 Sequential methods
5.5 The virtual fields method
5.5.1 General introduction
5.5.2 Applications to soft tissues
5.6 Conclusions and future directions emerging field of pelvic biomechanics
References
6 Mechanical properties of women pelvic soft tissues
6.1 Introduction
6.2 Vagina
6.2.1 Overview
6.2.2 Contributions from collagen and elastic fibers
6.2.3 Contributions from smooth muscle cells
6.2.4 Contributions from the nonfibrous ground matrix
6.2.5 Summary
6.3 Uterus
6.3.1 Overview
6.3.2 Contributions from collagen and elastic fibers
6.3.3 Contributions from smooth muscle cells
6.3.4 Contributions from the nonfibrous ground matrix
6.3.5 Summary
6.4 Uterosacral ligaments
6.4.1 Overview
6.4.2 Mechanical contributions from collagen and elastic fibers
6.4.3 Contributions from contractile smooth muscle cells
6.4.4 Contributions from the nonfibrous ground matrix
6.4.5 Summary
6.5 Levator ani
6.5.1 Introduction
6.5.2 Contributions from collagen and elastic fibers
6.5.3 Contributions from skeletal muscle cells
6.5.4 Contributions from the nonfibrous ground matrix
6.5.5 Summary
References
7 Mechanical properties of breast tissue
7.1 Introduction
7.2 Mechanics of breast tissue
7.2.1 A brief introduction to continuum mechanics
7.2.2 Constitutive models
7.2.2.1 Constitutive model considerations
7.2.2.2 Popular constitutive models for breast tissues
7.2.3 Constitutive model coefficient determination
7.2.3.1 Elastography
7.2.3.1.1 US strain imaging
7.2.3.1.2 Linear and nonlinear finite element ultrasound elastography (FE-USE)
7.2.3.1.3 Ultrasound shear wave elastography and computer tomographic elastography
7.2.3.1.4 Magnetic resonance shear wave elastography (MR-SWE)
7.2.3.1.5 Mechanical imaging
7.2.3.2 Measurement of mechanical properties of ex-vivo tissue specimens
7.2.3.2.1 Indentation
7.2.3.2.2 Whole breast biomechanical model based optimization
7.2.4 Constitutive model coefficients
7.3 A community\'s use of mechanics
7.4 Final remarks and future directions
7.4.1 Final remarks
7.4.2 Future directions
References
8 Evolution of mechanical properties with pathology & aging: application to pelvic tissues?
8.1 Introduction
8.2 Mechanical properties of tissues
8.3 The mechanical importance of tissue composition and microstructure
8.3.1 Collagen
8.3.1.1 Pathologies specific to collagen
8.3.1.2 Impact of aging on collagen
8.3.2 Elastin
8.3.2.1 Pathologies specific to elastin
8.3.2.2 Impact of aging on elastin
8.3.3 Glycosaminoglycans
8.3.3.1 Pathologies specific to glycosaminoglycans
8.3.3.2 Impact of aging on glycosaminoglycans
8.3.4 Smooth muscle
8.3.4.1 Pathologies specific to smooth muscle
8.3.4.2 Impact of aging on smooth muscle
8.3.5 Skeletal muscle
8.3.5.1 Pathologies specific to skeletal muscle
8.3.5.2 Impact of aging on skeletal muscle
8.3.6 Pathologies directly affecting multiple aspects of pelvic tissue mechanics
8.3.7 Pathologies and aging of pelvic tissues
8.3.8 Pelvic floor disorders
8.3.8.1 Stress urinary incontinence
8.3.8.2 Pelvic organ prolapse
8.3.9 Pregnancy and childbirth
8.4 Conclusion
References
9 Mechanical properties of pelvic implants: interaction between implants and tissue
9.1 Motivation
9.1.1 Current issues with prosthetic meshes for pelvic organ prolapse repair
9.1.2 Why mechanics matter
9.1.3 Hypotheses
9.1.4 Outline of this chapter
9.2 Mechanical and physical properties of prosthetic meshes
9.2.1 Textile meshes as hierarchical structures
9.2.2 Non-linear stress-strain relationship
9.2.3 Anisotropy
9.2.4 Viscoelasticity
9.2.5 Preconditioning
9.3 Experimental mechanical characterization of prosthetic meshes
9.3.1 Physiologically relevant test conditions
9.3.2 Mechanical behavior: a broad term
9.3.3 Mechanical behavior at the lower length scales
9.3.4 Structural mechanical behavior
9.3.5 Local mesh-tissue interaction
9.3.6 Experimental observations: what can we learn for the mechanical evaluation and design of meshes?
9.3.7 What would an ideal mesh look like?
9.4 Numerical modeling of pelvic implants
9.4.1 Structural simulations
9.4.2 Meso-/microstructure-inspired modeling approaches
9.4.3 Meso-/microstructural and multi-scale models
9.5 Alternative materials: electrospun networks
9.6 What are the needs?
References
10 Constitutive models of soft connective tissues under large strain: application to pelvic tissue?
10.1 Introduction
10.2 Mechanical formulation
10.2.1 Theoretical framework: large deformation
10.2.2 Hyperelasticity and non-linear elastic modeling
10.2.3 Characterizing soft biological tissues: a challenging task
10.2.3.1 Initial state: impact on the mechanical parameters
10.2.3.2 Incompressibility assumption
10.2.3.3 Homogeneous deformation
10.3 Isotropic modeling
10.3.1 Isotropic models: simplification of the SED and stress computation
10.3.2 Quick application
10.3.3 The elephant in the room: why and when to use an isotropic SED?
10.4 Anisotropic modeling
10.4.1 Stress penalty
10.4.2 Strain penalty
10.4.3 Anisotropic representation: how to carefully open the Pandora\'s box?
10.5 Conclusion
References
Part 3 Clinical imaging, investigations tools, and characterization
11 Medical imaging and patient-specific modeling of women pelvic system: application to magnetic resonance images
11.1 Introduction
11.2 Materials and methods
11.2.1 Magnetic resonance imaging
11.2.2 Geometry representation
11.2.3 Pelvic organs modeling using virtual image correlation
11.2.4 Generic 3D geometry
11.2.5 Virtual image
11.2.6 Objective function and optimization
11.2.7 Pelvic floor modeling for simulation
11.3 Applications and discussion
11.4 Conclusions
Acknowledgments
References
12 Quantitative assessment of pelvic mobility in women using MRI image analysis
12.1 Introduction
12.2 Method for quantifying pelvic mobility
12.2.1 Dynamic MRI protocol
12.2.2 POP-Q method
12.2.3 Full field measurement method
12.2.4 Displacement analysis
12.3 Method for quantifying pelvic mobility
12.3.1 Physiological pelvic mobilities
12.3.2 Pathological mobilities
12.3.3 Mobility analysis for evaluation of surgical techniques
12.4 Inter-organs displacements
12.5 Discussion
12.6 Conclusion
References
13 Patient-specific biomechanical modeling for applications in breast cancer diagnosis and treatment
13.1 Introduction
13.1.1 Breast anatomy
13.1.2 Breast cancer
13.1.3 Breast cancer diagnosis and treatment
13.2 Anatomical modeling
13.2.1 Segmenting medical images of the breast
13.2.2 Constructing anatomical models from segmentations
13.3 Applications
13.3.1 Assisting image registration for pre-operative treatment planning
13.3.2 Multimodal image registration for supporting diagnostic imaging
13.3.3 Predicting tumor positions during treatment procedures
13.3.4 Predicting cosmetic outcomes following breast cancer treatment
13.4 Challenges and opportunities
Acknowledgments
References
14 Ultrasound elastography: in vivo assessment of tissue stiffness
14.1 Introduction
14.2 Principles of elastography
14.2.1 Introduction
14.2.2 Static elastography / strain elastography (SE)
14.2.3 Dynamic elastography / shear wave elastography (SWE)
14.3 Clinical applications for breast and cervix
14.3.1 Breast elastography for tumor detection
14.3.1.1 Strain elastography (SE) of breast
14.3.1.2 Shear wave elastography (SWE) of breast
14.3.2 Cervical elastography
14.3.2.1 Cervical elastography for the prediction of preterm delivery or successful induction of labor
14.3.2.2 Cervical elastography for intraepithelial neoplasia (CIN) and cancer diagnostics
14.4 Conclusion
References
Part 4 From biomechanical models to medical devices, and patients treatments
15 Numerical simulation of vaginal delivery
15.1 Introduction
15.2 The three phases of a vaginal birth
15.3 Interest to perform a childbirth training simulator
15.4 A real-time childbirth simulation
15.4.1 Geometrical representations of the organs
15.4.2 Modeling of bony pelvis and pelvic floor
15.4.2.1 Bony pelvis
15.4.2.2 Pelvic floor
A strategy to obtain a real-time childbirth simulation
15.4.3 Modeling of uterus
15.4.4 Modeling of fetus
15.4.5 The complete delivery simulation coupled to a haptic device
15.4.6 Conclusion
15.5 Accurate childbirth simulations
15.5.1 Stresses applied on pelvic floor muscles
15.5.2 Uterine pressures applied on fetal head
15.5.3 Conclusion
15.6 Conclusion & perspective
Acknowledgments
References
16 Numerical models for breast surgery and reconstruction
16.1 Introduction
16.2 Previous work on breast biomechanical modeling to aid registration and surgical planning
16.3 Towards surgical guidance
16.4 Symmetric biomechanically guided prone-to-supine breast image registration for surgical and radiotherapy planning
16.5 Multiscale mechano-biological finite element modeling of oncoplastic breast surgery: numerical study towards surgical planning and cosmetic outcome prediction
16.6 Conclusion
Dedication
Acknowledgments
References
17 A numerical model for prolapse surgery
17.1 Introduction
17.2 Material and methods
17.2.1 Generation of the patient-specific FEM
17.2.1.1 Integration of non-observable anatomical structures: suspensions system
17.2.1.2 Boundary conditions
17.2.1.3 Material properties of the constitutive tissues
17.2.2 Generation of a patient-specific FEM for pathology
17.2.3 Generation of a surgical techniques model
17.3 Results
17.3.1 Validation of the PS model
17.3.2 Validation of the PathoS model
17.3.3 Evaluation of surgical techniques
17.3.4 Patient-specific model of surgical techniques
17.4 Discussion
17.5 Conclusion
References
18 Augmented reality biomechanical simulations for pelvic conditions diagnoses
18.1 Introduction
18.2 Simulation of deformable structures
18.2.1 FE models and constitutive law
18.2.1.1 Linear elastic model
18.2.1.2 Corotational formulation
18.2.2 Implicit time integration
18.2.2.1 Preconditioner
18.2.3 Time-stepping and collision detection
18.2.3.1 Collision detection
18.2.3.2 Contact mapping
18.2.4 Constraint-based simulation
18.2.4.1 Contact and friction models
18.2.4.2 Constraint solving and mechanical coupling
Step 1
Step 2
Step 3
Step 4
Step 5
18.2.4.3 Compliance and mechanical coupling
18.3 Registration of biomechanical models
18.3.1 Geometrical binding
18.3.1.1 Outliers and geometrical filtering
Unique pairing
Filtering with distance
Filtering with normals
18.3.2 Constraints definition
18.3.2.1 Bilateral constraints
18.3.2.2 Unilateral constraints
18.3.3 Constraint solving
18.3.3.1 Outliers and mechanical filtering
Force clipping
Image compliance
18.4 Applications
18.4.1 Data acquisition
18.4.2 Contour tracking
18.4.3 Boundary condition
18.4.4 Evaluation
18.5 Conclusion
References
19 Towards patient-specific treatment in gynecologic surgery: recent development and perspectives
19.1 Introduction
19.2 Research investigation needs
19.2.1 Mechanical properties of pelvic tissue
19.2.2 Nondestructive characterization of the mechanical properties of pelvic tissue
19.2.3 Medical image analysis
19.2.4 Numerical simulation of women\'s reproductive system treatment
19.3 Perspectives: Use of numerical simulation for treatment improvement in gynecology
19.3.1 Numerical simulator for training
19.3.2 Numerical simulation for a better understanding of physiology and pathology
19.3.3 Numerical tools for risks or pathology evaluation and prevention
19.3.4 Numerical tools for treatment planification
19.3.5 Numerical tools for treatment assistance
19.3.6 Towards a new generation of treatment
References
Index
Back Cover




پست ها تصادفی