توضیحاتی در مورد کتاب Bridge to Abstract Mathematics: Mathematical Proof and Structures
نام کتاب : Bridge to Abstract Mathematics: Mathematical Proof and Structures
عنوان ترجمه شده به فارسی : پلی به ریاضیات انتزاعی: اثبات ریاضی و ساختارها
سری :
نویسندگان : Ronald P. Morash
ناشر : Random House
سال نشر : 1987
تعداد صفحات : 414
ISBN (شابک) : 039435429X , 9780394354293
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 10 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Bridge to Abstract Mathematics - Mathematical Proof and Structures
Dedication
Preface
Contents
Book One - The Foundation: Sets, Logic, and Mathematical Argument
Chapter 1 Sets
1.1 Basic Definitions and Notation
1.2 Operations on Sets
1.3 Algebraic Properties of Sets
1.4 Theorems of Set Theory
1.5 Counting Properties of Finite Sets (Optional)
Chapter 2 Logic, Part I: The Propositional Calculus
2.1 Basic Concepts of the Propositional Calculus
2.2 Tautology, Equivalence, the Conditional,and Biconditional
and Biconditional
2.3 Theorems of the Propositional Calculus
2.4 Analysis of Arguments for Logical Validity, Part I (Optional)
Chapter 3 Logic, Part II: The Predicate Calculus
3.1 Basic Concepts of the Predicate Calculus
3.2 Quantification
3.3 Theorems About Predicates in One Variable
3.4 Quantification of Propositional
Functions in Several Variables
3.5 Analysis of Arguments for
Logical Validity, Part I1 (Optional)
Chapter 4 Elementary Applications of Logic
4.1 Applications of Logic to Set Theory-Some Proofs
4.2 Infinite Unions and Intersections
4.3 The Limit Concept (Optional)
Chapter 5 Methods of Mathematical Proof, Part I: Elementary Methods
5.1 Conclusions Involving ∀, but Not ∃ or →. Proof by Transitivity
5.2 Conclusions Involving ∀ and →, but Not ∃
5.3 Proof by Specialization and
Division into Cases
5.4 Proof by Mathematical Induction
Chapter 6 Methods of Mathematical Proof, Part II: Advanced Methods
6.1 Conclusions Involving ∀, Followed by ∃
(Epsilon-Delta Proofs Optional)
6.2 Indirect Proofs
6.3 Existence and Uniqueness (Optional)
6.4 Preview of Additional Advanced Methods of Proof (Optional)
Book Two - Bridging Topics: Relations, Functions, and Number System
Chapter 7 Relations, Part I: Equivalence relations and Partial Orderings
7.1 Relations
7.2 Equivalence Relations
7.3 Equivalence Classes and Partitions
7.4 Partial Orderings
Chapter 8 Relations, Part II: Functions and Mappings
8.1 Functions and Mappings
8.2 More on Functions and Mappings - Surjections, Bijections, Image, and Inverse Image
8.3 Cardinal Number of a Set
8.4 Arbitrary Collections of Sets
Chapter 9 Properties of the Number Systems of Undergraduate Mathematics
9.1 Fields
9.2 Ordered Fields
9.3 Completeness in an Ordered Field
9.4 Properties of the Complex Number Field
Chapter 10 Construction of the Number Systems of Undergraduate Mathematics
10.1 An Axiomatization for the System of Positive Integers
10.2 Development of the Integers and Rational Numbers
10.3 Outline of the Construction of the Reals
Answers and
Solutions to
Selected Exercises
Article 1.1
Article 1.2
Article 1.3
Article 1.5
Article 2.1
Article 2.2
Article 2.3
Article 2.4
Article 3.1
Article 3.2
Article 3.3
Article 3.4
Article 3.5
Article 4.1
Article 4.2
Article 4.3
Article 5.1
Article 5.2
Article 5.3
Article 5.4
Article 6.1
Article 6.2
Article 6.3
Article 7.3
Article 7.2
Article 7.1
Article 7.4
Article 8.1
Article 8.2
Article 8.3
Article 8.4
Article 9.1
Article 9.2
Article 9.3
Article 9.4
Article 10.1
Article 10.2
Article 10.3
List of Symbols
Index
A
B
C
D
E
F
G
H
I
J
L
M
N
O
P
U
Q
R
S
T
V
W
Z