توضیحاتی در مورد کتاب Cartilage: From Biology to Biofabrication
نام کتاب : Cartilage: From Biology to Biofabrication
ویرایش : 1st ed. 2023
عنوان ترجمه شده به فارسی : غضروف: از زیست شناسی تا ساخت زیستی
سری :
نویسندگان : Mohamadreza Baghaban Eslaminejad (editor), Samaneh Hosseini (editor)
ناشر : Springer
سال نشر : 2023
تعداد صفحات : 531
ISBN (شابک) : 9819924510 , 9789819924516
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 10 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Preface
Contents
Editors and Contributors
1: Introduction to Cartilage Tissue: Development, Structure, and Functions
1.1 Introduction
1.2 Cartilage Tissue in Mammalian Body
1.3 Articular Cartilage
1.3.1 Origin of Articular Cartilage: Embryology of Cartilage
1.3.2 Postnatal Articular Cartilage Growth and Expansion
1.4 Articular Cartilage Macrostructure
1.4.1 Cartilage Composition
1.4.2 The Mature Cartilage Matrix Structure and Function
1.5 Microstructure of Articular Cartilage: Chondrocyte Structure and Function
1.5.1 Chondrocyte Biology
1.6 Ultrastructure of Adult Articular Cartilage: Articular Cartilage Zone Organization
1.6.1 Radial Structure (The Chondron)
1.7 Biomechanical Functions and Mechanical Characteristics of Articular Cartilage
1.7.1 Compressive Properties of Articular Cartilage
1.7.2 Tensile and Shear Properties
1.7.3 Swelling Behavior of Articular Cartilage
1.8 Metabolism of Articular Cartilage
1.9 Maintaining a Healthy State: Articular Injuries and Disease
1.10 Conclusion
References
2: Cartilage Defects and Diseases: Conventional Therapies and Its Limitations
2.1 Introduction
2.2 OA
2.2.1 Progress and Limitations of Drug Therapy for OA
2.2.2 Progress and Limitations of Non-drug Therapy for OA
2.2.3 Progress and Limitations of Exercise Therapy for OA
2.2.4 Advances and Limitations of Cell Preparations and Stem Cell Therapy for OA
2.2.5 Progress and Limitations of Surgical Treatment of OA
2.3 RA
2.3.1 Progress and Limitations of Drug Therapy for RA
2.3.2 Progress and Limitations of Biologic Therapy for RA
2.3.3 Progress and Limitations of Exercise Therapy in RA
2.4 GA
2.4.1 Progress and Limitations of Drug Therapy for GA
2.4.2 Progress and Limitations of Exercise Therapy in GA
2.5 Conclusion
References
3: Strategies to Control Mesenchymal Stem Cell Differentiation for Regenerating Phenotypically Defined Articular Cartilage
3.1 Introduction
3.2 Spatial and Temporal Influence of Bioactive Factors
3.3 Manipulation of Scaffold Microenvironment for Cartilage Tissue Engineering
3.4 Provision of Biomolecular Cues
3.5 Provision of Physical Cues
3.5.1 Substrate Elasticity
3.5.2 Surface Topography
3.6 Biomaterial Facilitation of Mesenchymal Condensation
3.7 3D Composite Multilayered Scaffolds
3.8 Manipulation of Cell Culture Conditions
3.8.1 Co-Culture Platform
3.8.2 Oxygen Tension
3.8.3 Dynamic Stimulation
3.9 Multifactorial Approach in Stimulating MSC Chondrogenesis
3.10 Future and Conclusion
References
4: Single-Cell Analysis Approaches in Cartilage Diseases Diagnosis and Therapies
4.1 Introduction
4.2 Workflow in Single-Cell Technology
4.2.1 Single-Cell Isolation Technologies
4.2.1.1 Fluorescence-Activated Cell Sorting (FACS)
4.2.1.2 Laser Capture Microdissection (LCM)
4.2.1.3 Microfluidics
4.2.1.4 Magnetic-Activated Cell Sorting (MACS)
4.3 Various Type of Single-Cell Technologies
4.3.1 Single-Cell Genomics (SCG)
4.3.2 Single-Cell RNA Sequencing
4.3.2.1 Single-Cell Spatial Transcriptomics
4.3.3 Single-Cell Proteomics
4.3.3.1 Immunoassay-Based Techniques
4.3.3.2 Mass Spectrometry Tools
4.3.3.3 Microfluidics-Based Platforms
4.3.4 Single-Cell Epigenomics
4.3.4.1 Single-Cell DNA Methylation Profiling
4.3.4.2 Single-Cell Histone Modification Mapping
4.3.4.3 Single-Cell Chromatin Conformational Assessments
4.3.5 Single-Cell Multi-Omics
4.3.5.1 Single-Cell Genome and Transcriptome
4.3.5.2 Single-Cell Proteome and Transcriptome
4.3.5.3 Single-Cell Epigenome and Transcriptome
4.4 Single-Cell Analysis Applications
4.4.1 Biomarker Discovery
4.4.2 Single-Cell Genomics and Regenerative Medicine
4.4.2.1 Evaluation of Accuracy and Precision in Regenerative Medicine and Tissue Engineering
4.4.2.2 Single-Cell Atlases as a Reference for Tissue Regeneration
4.4.2.3 scRNA-seq-Related Methodologies to Guide Cell and Tissue Engineering
Transcription Factor Combination
Spatial Reconstruction
CRISPR-Cas9 System
4.4.2.4 Importance of scRNA-Seq in Disease Modeling and Therapy
4.4.3 Single-Cell Sequencing and Personalized Medicine
4.4.3.1 Dissection of the Tumor Microenvironment
4.4.3.2 Tumor Heterogeneity Assessment
4.4.3.3 Study of Therapy Resistance
4.4.3.4 Drug Development
4.5 Concluding Remarks and Future Perspective
References
5: The Importance of Mechanical Stimulation in Cartilage Formation: Applications of Bioreactors
5.1 Mechanical Functions and Properties of Articular Cartilage
5.2 Mechanical Milieu of Articular Cartilage
5.3 Development of Bioreactor Culture Systems
5.4 Cartilage-Specific Bioreactors Applying Mechanical Stimulation to Favor Neotissue Formation
5.4.1 Hydrostatic Pressure (HP)
5.4.2 Compression
5.4.3 Shear Stress
5.4.4 Multiaxial Loading
5.5 Mechanotransduction Mechanisms in Chondrogenic Cells: Evidence from Bioreactors
5.5.1 Mechanoreceptors on Chondrocyte Cytoplasmic Membranes
5.5.1.1 Ion Channels
5.5.1.2 Primary Cilia
5.5.1.3 Integrins
5.5.2 Downstream Signaling Cascades
5.6 New Perspectives for Mechanically Stimulated Cartilage Models: Joint-On-Chip
References
6: Signaling Pathways Regulating Cartilage Formation
6.1 Introduction
6.2 Development and Organization of the Cartilage
6.3 Signaling Pathways Regulate Chondrogenesis During Cartilage Formation
6.4 Early-Stage Regulator in the Signaling Cascade
6.4.1 TGF-beta Signaling Pathway
6.4.2 BMP Signaling Pathway
6.4.3 SOX-9 Signaling Pathway
6.4.4 IGF Signaling Pathway
6.4.5 FGF Signaling Pathway
6.4.6 Wnt/beta-Catenin Signaling Pathway
6.4.7 Growth Differentiation Factor 5 (GDF5) Signaling Pathway
6.4.8 Hedgehog Signaling Pathway
6.5 Late-Stage Signaling Pathways Involved in Cartilage Development
6.5.1 Prg4 Signaling Pathway
6.5.2 Notch Signaling Pathway
6.6 Conclusion
References
7: Role and Application of Biomolecules for Regeneration of Cartilage Tissue
7.1 Introduction
7.2 Biomolecules Affecting Cartilage Development and Maturation
7.2.1 Cartilage Components
7.2.1.1 Type II Collagen (COL2A1)
7.2.1.2 Aggrecan (ACAN)
7.2.1.3 Lubricin (PRG4)
7.2.1.4 Tenascin-C (TN-C)
7.2.2 Signaling-Related Proteins
7.2.2.1 Transforming Growth Factor-betas (TGF-betas)
7.2.2.2 EGFR Signaling
7.2.2.3 Fibroblast Growth Factor 18 (FGF18)
7.2.2.4 Parathyroid Hormone-Related Peptide (PTHrP)
7.2.2.5 CD44
7.3 Transcription Factors
7.3.1 SRY-Box9 (SOX9)
7.3.2 Forkhead Box Class O (FOXO)
7.3.3 Nuclear Factor of Activated T Cells (NFATc)
7.3.4 cAMP Response Element-Binding Protein (CREB)
7.3.5 Hypoxia-Inducible Factor (HIF) 1α and 2α
7.3.6 Y-Box Binding Protein 1 (YBX1)
7.4 Biomolecules Affecting Cartilage Homeostasis
7.4.1 RNA-Binding Proteins
7.4.1.1 Pre-transcriptional Regulation
54-kDa Nuclear RNA-Binding Protein (p54nrb)
7.4.1.2 Splicing
Nucleolar GTP-Binding Protein 3 (GNL3)
Fused in Sarcoma (FUS)
7.4.1.3 mRNA Stability
Methyltransferase 3 (METLL3)
Tristetraprolin (TTP)
Human Antigen R (HuR)
Staphylococcal Nuclease and Tudor Domain-Containing 1 (SND1)
7.4.1.4 Stress Granule Assembly
T-Cell-Restricted Intracellular Antigen 1 (TIA-1)
Transactive Response DNA-Binding Protein 43kDa (TDP-43)
7.4.1.5 Regulation of Translocation
Cytoplasmic Polyadenylation Element-Binding Protein 1 (CPEB1)
Pumilio RNA-Binding Family Member 1 (PUM1)
7.4.2 MicroRNAs (miRNAs)
7.4.2.1 miRNA140
7.4.2.2 miRNA17
7.4.2.3 miRNA101
7.4.2.4 miRNA379-5p
7.4.2.5 miRNA455-5p and -3p
7.4.2.6 miRNA93-5p
7.4.2.7 miRNA126-5p
7.4.2.8 miRNA146a
7.4.3 Circular RNAs (circRNAs)
7.4.4 Ubiquitination
7.4.4.1 AXIN
7.4.4.2 Ubiquitin-Conjugating Enzyme E2 M (UBE2M)
7.4.4.3 PARKIN
7.4.4.4 F-Box Protein 6 (FBXO6)
7.4.4.5 Aurora Kinase A (AURKA)
7.4.4.6 WW Domain-Containing Protein 2 (WWP2)
7.5 Reactive Oxygen Species
7.5.1 Superoxide Dismutase 2 (SOD2)
7.5.2 Nuclear Factor (Erythroid-Derived 2)-Like 2 (NRF2)
7.5.3 Peroxiredoxins (PRDX)
7.5.4 Mitofusion 2 (MFN2)
7.6 Conclusion
References
8: Extracellular Matrix Biomimicry for Cartilage Tissue Formation
8.1 Introduction
8.2 Physicochemical and Biological Properties of Biomimetic Constructs
8.2.1 Physicochemical Properties
8.2.1.1 Stiffness
8.2.1.2 Porosity
8.2.1.3 Surface Properties
8.2.1.4 Piezoelectric Properties
8.2.1.5 Electrical Conductivity
8.2.1.6 Fluid Absorption
8.2.1.7 Surface Wettability
8.2.2 Biocompatibility
8.2.2.1 Ability to Stimulate Chondrogenesis
8.2.2.2 Proliferation
8.2.2.3 Adherence
8.2.2.4 Maintenance of Cell-Cell Interactions
8.2.2.5 Degradation
8.3 Biomimetic Materials for Cartilage Tissue Restoration
8.3.1 Natural ECM-Based Biomimetic Constructs for Cartilage Repair
8.3.2 Natural Non-cartilage ECM-Based Biomimetic Materials for Cartilage Repair
8.3.3 Synthetic Materials for Cartilage Repair
8.3.4 Mixed Biomimetic Materials for Cartilage Repair
8.4 The Effects of External Physical and Chemical Stimuli on ECM-Based Scaffolds/Structures
8.5 Application of Scaffolds for In Vivo Studies
8.6 Conclusions
References
9: Cartilage Tissue Engineering: Advances and Frontiers
9.1 Introduction
9.2 Scaffold-Based Techniques for Cartilage Regeneration
9.2.1 3D Bioprinting
9.2.2 In Situ Printing
9.2.2.1 Handheld
9.2.2.2 Robotic
9.2.3 Organ-on-a-Chip Platforms
9.2.4 Injectable Hydrogel-Based Drug Delivery System
9.3 Emerging Technologies for Cartilage Tissue Engineering
9.3.1 4D Printing
9.3.2 5D Printing
9.3.3 6D Printing
9.4 Scaffold-Free Techniques for Cartilage Regeneration
9.4.1 Kenzan Bioprinting
9.4.2 Organoids
9.4.3 Cell Sheet
9.4.4 Cell Imprinting
9.5 Conclusion
References
10: Advances in Hydrogels for Cartilage Regeneration
10.1 Introduction
10.2 Cross-Linking Strategies for Hydrogel Formation in Cartilage Tissue Engineering
10.2.1 Physically Cross-Linked Hydrogels
10.2.2 Chemically Cross-Linked Hydrogels
10.2.3 Double-Network Hydrogels
10.3 Hydrogels as Vehicles for Delivery of Chondroinductive Factors
10.4 Bioprinting of Hydrogels for Cartilage Regeneration
10.5 Conclusion and Outlook
References
11: Shape-Memory Polymers in Cartilage Tissue Engineering
11.1 Introduction
11.2 Shape-Memory Polymer (SMP) as a Biomaterial
11.3 Shape-Memory Polymers in Biomedical Applications
11.3.1 Polymers with Shape Memory for Delivery of Drugs
11.3.2 Shape-Memory Polymers for Cardiovascular
11.3.3 Polymers with Shape Memory and Antibacterial Properties
11.4 Biodegradable Shape-Memory Polymers (BSMP)
11.5 Tissue Engineering
11.6 Cartilage Tissue Engineering
11.7 Using Shape-Memory Polymers in Cartilage Tissue Engineering Scaffolds
11.7.1 Alginate as a Smart Natural Polymer in Cartilage Tissue Engineering
11.7.2 Alginate Scaffolds in Cartilage Tissue Engineering
11.7.3 Alginate as a Cell Carrier in Cartilage Tissue Engineering
11.7.4 Alginate in the Electrospinning Process
11.7.5 Alginate in a Multiresponsive System
11.8 More Studies and Reviews
11.9 Conclusion
References
12: Widely Used Biomaterials in Cartilage Biofabrication
12.1 Introduction
12.2 Properties of Cartilage Tissues
12.3 Cartilage Diseases
12.4 Cartilage Tissue Regeneration Approaches
12.4.1 Clinically Used Approaches
12.4.2 Surgical Approaches
12.4.3 Regenerative Medicine and Cell-Based Approaches
12.4.4 Tissue Engineering Approaches
12.5 Biomaterials for Damaged Cartilage Tissue Regeneration
12.5.1 Natural Materials
12.5.1.1 Collagen
12.5.1.2 HA
12.5.1.3 Fibrin
12.5.1.4 CS
12.5.1.5 Agarose
12.5.1.6 Alginate
12.5.1.7 Bacterial Cellulose (BC)
12.5.1.8 Chondroitin Sulfate (ChS)
12.5.2 Synthetic Materials
12.5.3 Bioactive Molecules Used for Cartilage Tissue Engineering
12.5.3.1 Kartogenin (KGN)
12.5.3.2 Simvastatin
12.5.4 Smart Biomaterials for Cartilage Tissue Regeneration
12.6 Conclusion and Perspective
References
13: Importance of 3D Printing Techniques in Cartilage Tissue Engineering
13.1 Introduction
13.2 3D Printing Essentials in Cartilage Tissue Regeneration
13.3 Overview of 3D Printing Approaches in Cartilage Tissue Engineering
13.3.1 Scaffold-Based 3D Printing Approaches
13.3.1.1 Inkjet-Based 3D Printers
13.3.1.2 Extrusion-Based 3D Printers
13.3.1.3 Laser-Based 3D Printers
13.3.1.4 Stereolithography 3D Printers
13.3.1.5 In Situ 3D Printer
13.3.2 Scaffold-Free 3D Printing
13.4 Conclusion and Future Aspects
References
14: Cell Therapy as a Novel Therapeutic Approach for Cartilage Diseases
14.1 Introduction
14.2 Mechanism of Cartilage Regeneration
14.3 Cellular Sources
14.3.1 Bone Marrow-Derived Mesenchymal Stem Cells (BD-MSCs)
14.3.2 Adipose-Derived Mesenchymal Stem Cells (AD-MSCs)
14.3.3 Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells (hUCB-MSCs)
14.3.4 Synovial-Derived Mesenchymal Stem Cells (SD-MSCs)
14.4 Cellular Delivery Techniques
14.4.1 Direct Implantation
14.4.2 Injection
14.5 Rehabilitation Following Cartilage Repair
14.6 Conclusion
References
15: Extracellular Vesicles: A Potent Therapeutic Tool for Cartilage Regeneration
15.1 Introduction
15.2 Cartilage
15.3 Cartilage Injuries
15.4 Current Treatments and Challenges in Management of Cartilage Injuries
15.5 EV Biology
15.5.1 Biogenesis
15.5.2 Characteristics
15.6 Involvement of EVs in the Pathophysiology of Cartilage Diseases
15.7 Chondrogenic Role of EVs
15.8 Role of EVs in Cartilage Repair
15.9 EV-Based Cell-Free Therapy for Cartilage Repair
15.10 Future Perspectives and Conclusions
References
16: Osteochondral Unit Approach for Articular Cartilage Regeneration
16.1 Introduction
16.2 Clinical Treatment Methods
16.3 Osteochondral Tissue Engineering Approaches for Articular Cartilage Regeneration
16.3.1 Requirement of Osteochondral Scaffolds
16.3.1.1 Biocompatibility, Bioactivity and Surface Topography
16.3.1.2 Biodegradability
16.3.1.3 Mechanical Strengths
16.3.1.4 Architecture and Porosity
16.3.2 Biomaterials for Osteochondral Regeneration
16.3.2.1 Biomaterials for Cartilage Regeneration
16.3.2.2 Biomaterials for Subchondral Bone Regeneration
16.3.3 Traditional TE Approaches
16.3.3.1 Cell-Free and Cell-Seeding TE Approaches
16.3.3.2 Cell-Based TE Approaches
16.3.3.3 Scaffold-Free TE Approaches
16.3.4 3D-Printed Osteochondral Scaffolds for Articular Cartilage Regeneration
16.3.4.1 Monophasic Scaffolds
16.3.4.2 Biphasic and Multiphasic Scaffolds
16.3.4.3 Gradient Scaffolds
16.4 Concluding Remarks
References
17: Stem Cells Therapy for Cartilage Regeneration in Clinic: Challenges and Opportunities
17.1 Introduction
17.2 Stem Cells for Cartilage Regeneration
17.3 Stem Cell Delivery Strategies in Cartilage Regeneration
17.4 Mechanism of Stem Cells´ Function in Cartilage Regeneration
17.5 The Effect of Stem Cells on Cartilage Regeneration by Differentiating and Affecting Biological Processes
17.6 Regeneration Mechanisms of Mesenchymal Stem Cells in Damaged Cartilage
17.7 Embryonic and Induced Pluripotent Stem Cells in Cartilage Regeneration
17.7.1 Embryonic Stem Cells (ESCs)
17.7.1.1 Growth Factors
17.7.1.2 Coculture, Conditioned Medium, and Morphogenetic Factors
17.7.1.3 Small Molecules
17.7.1.4 Genetic Manipulation
17.7.1.5 Biomaterial-Assisted Chondrogenic Differentiation of ESCs and Cartilage Tissue Engineering
17.7.2 Induced Pluripotent Stem Cells
17.8 Mesenchymal Stem Cells in Cartilage Regeneration
17.8.1 MSCs as a Therapeutic Tool or Target
17.8.1.1 Endogenous MSCs
17.8.1.2 Exogenous MSCs
17.8.2 Combination Therapies with MSCs
17.8.2.1 Small Molecular Drugs
17.8.2.2 Growth Factors
17.8.2.3 Biomechanical Factors
17.9 Clinical Trial
17.10 Horizons and Challenges Ahead
References
18: Validation of Tissue-Engineered Constructs: Preclinical and Clinical Studies
18.1 Introduction
18.2 Present Status for Articular Cartilage Repair
18.2.1 Traditional Surgical Regeneration Techniques
18.2.2 Osteochondral Transplantation (OT)
18.2.3 Autologous Chondrocyte Implantation (ACI)
18.2.4 Allogeneic and Autologous Stem Cells Implantation
18.3 Progress Toward Tissue-Engineered Cartilage
18.3.1 Tissue-Engineered Constructs
18.3.2 Cell-Free Approaches for Cartilage Regeneration
18.3.3 Scaffold-Free Constructs
18.3.4 Extracellular Vesicles: A Promising Cell-Free Therapy for Cartilage Repair
18.3.5 In Vivo Characterization for Bioconstructs Before Initiation of Clinical Studies (Preclinical Studies)
18.3.6 Mechanical Testing of Cartilage Implants
18.3.7 Evaluating Biomaterial-Host Interactions with Histological Scoring
18.3.8 Evaluating Biomaterial Interaction with Imaging
18.3.8.1 Magnetic Resonance Imaging (MRI)
18.3.8.2 Microcomputed Tomography (Micro-CT)
18.3.8.3 Noninvasive Tracking and Monitoring
18.3.8.4 Fluorescent Labeling
18.3.8.5 Bioluminescent Imaging
18.3.8.6 Radiolabeling
18.3.8.7 Magnetic Particle Labeling
18.4 Clinical Performance of Tissue-Engineered Constructs and Templates
18.4.1 Commercial or FDA-Approved Constructs
18.4.2 Clinical Trials Founded on Validated Constructs
18.4.2.1 VAS [Time Frame: x Days/Months]
18.4.2.2 The score for Lysholm [Time Frame: x Days/Months]
18.4.2.3 The Score According to KOOS [Time Frame: x Days/Months]
18.4.2.4 IKDC Score [Duration: x Days/Months]
18.4.3 Inclusion Criteria
18.4.3.1 Carticel
18.4.3.2 Chondron
18.4.3.3 Cartistem
18.4.4 MACI
18.5 Concluding Remarks and Future Trends
References