Catalysis at Surfaces

دانلود کتاب Catalysis at Surfaces

46000 تومان موجود

کتاب کاتالیز در سطوح نسخه زبان اصلی

دانلود کتاب کاتالیز در سطوح بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 7


توضیحاتی در مورد کتاب Catalysis at Surfaces

نام کتاب : Catalysis at Surfaces
عنوان ترجمه شده به فارسی : کاتالیز در سطوح
سری : De Gruyter Textbook
نویسندگان : , ,
ناشر : Walter de Gruyter
سال نشر : 2023
تعداد صفحات : 707
ISBN (شابک) : 9783110632477
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 19 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover
Half Title
Also of interest
Catalysis at Surfaces
Copyright
Preface
Contents
1. Introduction
1.1 Catalysis, reaction rate, and equilibrium
1.2 Catalyst and reactant phases
1.3 Catalysis and daily life
1.4 Basic concepts of surface catalysis
1.4.1 Reaction rate
1.4.2 Activity, selectivity, and stability
1.4.3 Catalyst and catalytic process
1.5 Surface catalysis: an art or a science?
1.6 Catalyst research: an overview
References
2. Surface catalysis: the scene and the play
2.1 Solids
2.2 Surfaces
2.2.1 Surface structures
2.2.2 Surface chemistry
2.3 Particle architecture in catalytic materials
2.3.1 Size, porosity, and structural heterogeneity of catalyst particles
2.3.2 Supports for heterogeneous catalysts
2.3.2.1 Silica (SiO2)
2.3.2.2 Alumina (Al2O3)
2.3.2.3 Alumosilicates/zeolites
2.3.2.4 Metal-organic frameworks
2.3.2.5 Titania, zirconia, ceria
2.3.2.6 Carbon materials
2.3.3 Support and supported species
2.3.4 Alternative catalyst architectures
2.4 Adsorption
2.4.1 Adsorption and desorption: phenomena and classification
2.4.2 Physisorption and chemisorption
2.4.3 Description of equilibria in gas-phase adsorption
2.4.4 Description of equilibria in liquid-phase adsorption
2.5 Surface reactions
2.5.1 Thermal catalysis
2.5.2 Photocatalysis
2.6 Reaction mechanisms and reaction kinetics in thermal catalysis
2.6.1 Reaction kinetics of surface processes
2.6.2 Influences of transport limitations on reaction rates
2.7 Electrochemistry and electrocatalysis
2.8 Reactors for surface-catalytic reactions
2.8.1 Ideal and real reactors
2.8.2 Reactors for thermocatalytic processes
2.8.3 Reactors for photocatalytic processes
2.8.4 Reactors for electrochemical conversions
References
3. Tools of catalysis research
3.1 Catalyst preparation
3.1.1 Formation of solids from fluid phases
3.1.1.1 Precipitation and coprecipitation
3.1.1.2 Crystallization: synthesis of zeolites and MOFs
3.1.1.3 Sol-gel transition
3.1.1.4 Solidification of melts
3.1.1.5 Solids from the gas phase
3.1.1.6 Flame-based synthesis routes
3.1.2 Shaping of catalyst pellets
3.1.3 Deposition of active components on the internal surface of porous supports
3.1.3.1 Equilibrium adsorption and ion exchange
3.1.3.2 Impregnation
3.1.3.3 Deposition-precipitation
3.1.3.4 Anchoring, grafting, and surface organometallic chemistry
3.1.3.5 Deposition of colloids and melt infiltration
3.1.3.6 Deposition of precursors from the gas phase
3.1.3.7 Solid-state methods
3.1.4 Thermal conditioning
3.1.5 Activation
3.1.6 Preparation of catalytically active electrodes
3.2 Rate measurements in surface catalysis
3.2.1 Thermal catalysis
3.2.2 Reactors for photocatalytic rate measurements
3.2.3 Measuring electrochemical reaction rates
3.3 Application-oriented characterization of solid catalysts
3.3.1 Density and porosity of particles and beds
3.3.2 Stability toward mechanical stress
3.4 Research-oriented characterization of solid catalysts
3.4.1 Analysis of surface area and porosity
3.4.1.1 Capillary phenomena in pores
3.4.1.2 Measuring adsorption data
3.4.1.3 Specific surface area: the BET method
3.4.1.4 Porosity analysis by physisorption
3.4.1.5 Porosity Analysis by mercury intrusion
3.4.1.6 Analysis of particle dispersion by chemisorption
3.4.2 Thermal analysis and calorimetry
3.4.2.1 Standard methods: DTA and DTG
3.4.2.2 Calorimetry in stationary and dynamic modes
3.4.2.3 Temperature-programmed desorption (TPD) and adsorption (TPA)
3.4.2.4 Temperature-programmed surface reaction (TPSR)
3.4.2.5 Temperature-programmed reduction (TPR), oxidation (TPO), and sulfidation (TPS)
3.4.3 Scattering and diffraction
3.4.3.1 Elastic and inelastic scattering
3.4.3.2 Elastic scattering at ordered arrays: diffraction
3.4.3.3 X-ray diffraction (XRD)
3.4.3.4 Other diffraction and scattering techniques
3.4.4 X-ray absorption fine structure (XAFS)
3.4.4.1 Fine structure in X-ray absorption
3.4.4.2 Acquisition and interpretation of X-ray absorption spectra
3.4.4.3 XAFS in examples
3.4.5 Surface analysis by photoemission techniques
3.4.5.1 Photoemission and surface sensitivity
3.4.5.2 Measuring and assigning photoelectron spectra
3.4.5.3 Sources of analytical information
3.4.5.3.1 Binding energies
3.4.5.3.2 Opportunities based on XPS line shapes
3.4.5.3.3 Surface sensitivity and quantitative analysis
3.4.5.3.4 Structural sensitivity by combining XPS and XAES
3.4.5.3.5 Ultraviolet photoelectron spectroscopy
3.4.5.4 XPS: examples for the interpretation of spectra
3.4.6 Surface analysis with ions: Secondary ion mass spectrometry (SIMS) and Low-energy ion scattering (LEIS)
3.4.6.1 Interactions between low-energy ions and solids
3.4.6.2 Secondary ion mass spectrometry (SIMS)
3.4.6.3 Low-energy ion scattering (LEIS)
3.4.7 Spectroscopy of electronic transitions: absorption of UV and visible light
3.4.7.1 Electron transitions and their diagnostic potential
3.4.7.2 Measuring UV-Vis spectra
3.4.7.3 Typical applications of UV-Vis spectroscopy in catalyst research
3.4.8 Vibrational spectroscopy
3.4.8.1 Vibrations and vibrational spectra
3.4.8.2 Excitation processes and spectroscopies
3.4.8.3 Measuring IR spectra of heterogeneous catalysts
3.4.8.4 IR spectroscopy with catalysts: typical applications
3.4.8.5 Measuring Raman spectra of heterogeneous catalysts
3.4.8.6 Raman spectroscopy in catalysis: typical applications
3.4.9 Magnetic resonance spectroscopy
3.4.9.1 Magnetism and magnetic resonance
3.4.9.2 Electron paramagnetic resonance spectroscopy (EPR)
3.4.9.3 Nuclear magnetic resonance spectroscopy (NMR)
3.4.10 Mössbauer spectroscopy
3.4.10.1 The Mössbauer effect
3.4.10.2 Spectroscopy with the Mössbauer effect
3.4.11 Imaging
3.4.11.1 Transmission electron microscopy (TEM)
3.4.11.2 Scanning electron microscopy (SEM)
3.4.11.3 Scanning probe microscopy
3.4.12 Electrochemical characterization techniques
3.5 Computational chemistry in catalysis research
3.5.1 Wave function-based quantum chemistry and density functional theory
3.5.2 Cluster and periodic models
3.5.3 Quantum chemistry in catalysis research: typical applications
References
4. A close-up to some important aspects of surface catalysis
4.1 A preface
4.2 Structure and activity
4.2.1 The Sabatier principle
4.2.2 Electronic structure and catalytic activity on metal surfaces
4.2.3 Spatial structure and catalytic activity
4.2.4 Promoting activity
4.3 Structure and selectivity
4.3.1 Side products and strategies
4.3.2 Shape selectivity
4.3.3 Selective oxidation in the gas phase
4.3.4 Selective hydrogenation
4.3.5 Promoting selectivity
4.4 Stability, regeneration, and reactivation
4.4.1 Mechanisms of catalyst deactivation
4.4.1.1 Poisoning and fouling
4.4.1.2 Loss of active component
4.4.1.3 Thermal effects
4.4.1.4 Mechanical degradation
4.4.2 Preventing catalyst decay/promoting stability
4.4.3 Regeneration of catalysts and the end of their life cycle
4.5 Types of reaction mechanisms
4.5.1 Getting insight into surface processes
4.5.2 Reaction types and catalytic mechanisms: catalysis on Brønsted sites, with nucleophilic oxygen, and via metal-carbon bonds
4.5.2.1 Reactions catalyzed by solid Brønsted acids
4.5.2.2 Allylic oxidation of propene
4.5.2.3 Mechanisms involving metal-carbon bonds
4.5.3 Site isolation and catalytic mechanism
4.5.4 Mechanisms depending on transport steps
4.5.5 Mechanisms involving pools of secondary species
4.5.6 The multiplicity of sites and mechanisms
4.6 Microkinetic modeling
4.7 Heterogeneous catalysis in liquids: what is special?
4.8 Structure and performance in photocatalysis
4.9 Structure and performance in electrocatalysis
4.9.1 Electrocatalytic reaction mechanisms
4.9.2 Recent topics of electrocatalysis
References
5. With catalysis into the Anthropocene age: strategies and a look ahead
References
Appendix
A1. Basic information on applications of (thermal) catalysis, photocatalysis, and electrocatalysis
Ammonia synthesis (Haber–Bosch process)
Ammonia oxidation (Ostwald process)
Methanol synthesis
Selective oxidation of methanol
Fischer–Tropsch (FT) reaction
Higher alcohol synthesis (HAS)
Steam reforming of methane (SRM)
Dry reforming of methane (DRM)
Catalytic partial oxidation (POX) of methane
Methanation
Oxidative coupling of methane (OCM)
Water-gas shift
Hydrogenation
Selective hydrogenation of unsaturated hydrocarbons
Selective hydrogenation of unsaturated aldehydes/ketones
Hydrotreatment
Hydrodesulfurization (HDS)
Hydrodenitrogenation (HDN)
Hydrodemetallization (HDMe)
Hydrocracking
Fluid catalytic cracking (FCC)
Naphtha reforming
Light naphtha isomerization
Isobutane alkylation
Friedel–Crafts alkylation
Synthesis of alkyl tert-butyl ethers
Xylene isomerization
Dehydrogenation of propane
Dehydrogenation of ethylbenzene
Metathesis of propene
Polymerization with Ziegler–Natta or Phillips catalysts
Allylic oxidation of propene
Electrophilic oxidation of acrolein
Ammoxidation of propene
Oxidative dehydrogenation (ODH) and (amm)oxidation of propane
ODH and (amm)oxidation of ethane
Oxidation of n-butane to maleic anhydride (MA)
Oxidation of o-xylene to phthalic anhydride (PA)
Epoxidation of ethene
Epoxidation of propene with O2 (a), O2/H2 (b), or H2O2 (c)
Other selective oxidations with H2O2
Preferential oxidation of CO in the presence of H2 (PROX)
Oxychlorination of ethene
Deacon process
Three-way catalysis
Diesel oxidation catalysts (DOC)
Selective catalytic reduction (SCR) of NO with NH3
NOx storage
A2. Derivation of some equations presented in this book
A2.1 BET equation (2.16)
A2.2 Derivation of a Hougen–Watson rate law – First order reaction with rate-limiting adsorption of A
A2.3 Solution of eq. (2.42)
A2.4 Derivation of eq. (2.51) within the porous sphere model
References
Index




پست ها تصادفی