CATALYSIS BY METAL COMPLEXES AND NANOMATERIALS: fundamentals and applications

دانلود کتاب CATALYSIS BY METAL COMPLEXES AND NANOMATERIALS: fundamentals and applications

52000 تومان موجود

کتاب کاتالیز توسط مجتمع های فلزی و نانومواد: اصول و کاربردهای نسخه زبان اصلی

دانلود کتاب کاتالیز توسط مجتمع های فلزی و نانومواد: اصول و کاربردهای بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 8


توضیحاتی در مورد کتاب CATALYSIS BY METAL COMPLEXES AND NANOMATERIALS: fundamentals and applications

نام کتاب : CATALYSIS BY METAL COMPLEXES AND NANOMATERIALS: fundamentals and applications
عنوان ترجمه شده به فارسی : کاتالیز توسط مجتمع های فلزی و نانومواد: اصول و کاربردهای
سری :
نویسندگان : ,
ناشر : American Chemical Society
سال نشر : 2019;2020
تعداد صفحات : 220
ISBN (شابک) : 9780841234376 , 084123437X
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 31 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Catalysis by Metal Complexes and Nanomaterials: Fundamentals and Applications......Page 2
Catalysis by Metal Complexes and Nanomaterials: Fundamentals and Applications......Page 4
Library of Congress Cataloging-in-Publication Data......Page 5
Foreword......Page 6
Subject Index......Page 8
Preface......Page 10
Introduction......Page 12
Scheme 1. Selected examples of successful dinucleating ligands that feature the xanthene linker: (a) “Pacman” systems (110), (b) Limberg’s β-diketiminato system (1113), (c) Ma’s phenoxyiminato system (1416), (d) Hirotsu’s macrocyclic phenoxyiminato system (1819), (e) “xantphos” systems (2022), (f) Takeuchi’s “double-decker” diimine system (2324).......Page 13
Synthesis of Bis(iminopyridine) Dicopper Complexes......Page 14
Synthesis of a Bis(iminopyridine) Dinickel Complex for Alkyne Cyclotrimerization......Page 15
Scheme 2. Formation of dinuclear and polynuclear CuI complexes with L1. Reproduced with permission from ref 34. Copyright 2014 John Wiley and Sons.......Page 16
Figure 2. The structure of 5 (top) and 6 (bottom), 30% probability ellipsoids. PF6 counterions and the crystallization solvent molecules are omitted for clarity. Reproduced with permission from ref 34. Copyright 2014 John Wiley and Sons.......Page 17
Scheme 4. Structures of precatalysts in Table 1. Reproduced with permission from ref 35. Copyright 2017 The Royal Society of Chemistry.......Page 18
Reactions of Dicobalt Octacarbonyl with Bis(imino)pyridine Ligands......Page 19
Figure 3. Optimized structures of the dialkyne adduct 8a (left), the metallacyclopentadiene species 8b (center), and the metallacycloheptatriene intermediate 8c (right). For the full reaction mechanism, see reference 35. Reproduced with permission from ref 35. Copyright 2017 The Royal Society of Chemistry.......Page 20
Figure 4. X-ray crystal structures of 13′ (left – top and bottom) and 13 (right – top and bottom), 50% probability ellipsoids. H-atoms and cocrystallized solvents are omitted for clarity. Reproduced with permission from ref 36. Copyright 2018 The Royal Society of Chemistry.......Page 21
Synthesis of Bimetallic Zinc Complexes for Lactide Polymerization......Page 22
Scheme 6. Coordination chemistry of L4 with zinc. Complex in square brackets (23) was not characterized by X-ray crystallography, and its structure is proposed based on NMR spectroscopy. Reproduced with permission from ref 37. Copyright 2017 The Royal Society of Chemistry.......Page 23
Synthesis and Reactivity of a Hetero-Bimetallic Molybdenum–Copper Complex To Model Mo–Cu CODH......Page 24
Scheme 7. Reactions of L6 with CuI and MoVI/WVI precursors. Reproduced with permission from ref 38. Copyright 2018 The Royal Society of Chemistry.......Page 25
Figure 6. X-ray structure of 32, 40% probability ellipsoids. NEt4 was omitted for clarity. Reproduced with permission from ref 38. Copyright 2018 The Royal Society of Chemistry.......Page 26
Summary......Page 27
References......Page 28
Structure, Reactivity, and Chemistry of Gold Complexes......Page 30
Figure 1. Representative examples of different oxidation states of gold complexes.......Page 31
Stability and Ligand Tuning......Page 32
Figure 3. Synthetic scheme illustrating early alkyne hydrofunctionalization using a AuI–phosphine catalyst 54.......Page 33
Figure 4. Elucidating the P–Au–P donor system 55. Electron density from the carborane increases donation from the bidentate P–P ligand system, which results in a stable cationic gold center upon activation via chloride removal. The structure bearing the carborane moiety was originally designed by Jones and coworkers 57. Bourissou redesigned the title complex with a NTf2 ligand rather than a Cl ligand 55.......Page 34
Oxidative Addition......Page 35
Figure 5. Work elucidating the formation of ethane through oxidative addition to a AuI alkyl complex.......Page 36
Figure 7. Synthetic scheme illustrating oxidative addition with varying the R group in the AuI precursor. *NHC = 1,3-bis(phenyl)-1,3-dihydro-2H-imidazol-2-ylidene.......Page 37
Figure 9. Illustration of pre-P,N-chelated AuI complex and its ability to undergo oxidative addition.......Page 38
Figure 11. Select ligands (L) showing yield dependence on sterics. Yields are shown below each molecule 97.......Page 39
Figure 14. Photoactive catalysis using solely a AuI catalyst. Reactions were performed at room temperature for 24 hours 101.......Page 40
Figure 16. Scheme of Pd-catalyzed Sonogashira-type reaction using a gold cocatalyst instead of a copper cocatalyst.......Page 41
Figure 19. Illustration of the transmetalation between Au/B 117.......Page 42
Reductive Elimination......Page 43
Figure 23. Four recent examples of C–C bond formation via reductive elimination from a AuIII complex (93126146150). (a) C(sp2)–C(sp2) reductive elimination from a neutral AuIII to neutral AuI complex. (b) C(sp2)–C(sp2) reductive elimination via transmetalation of boronic acids. (c) Halide dependent reductive elimination to aryl halides. (d) C(sp2)–C(sp2) coupling via reductive elimination from a cationic AuIII complex.......Page 44
Figure 25. Illustration of Au-catalyzed Sonogashira-type C(sp2)–C(sp2) cross-coupling. Temperature varied with different R groups. Selectfluor is 1-chloromethyl-4-fluoro-1,4 diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate), used as an oxidizing agent for AuI to AuIII 156.......Page 45
Figure 27. (a) Reductive elimination of AuIII thiolates. 1-adamantylthiol is oxidatively added to gold twice, inducing reductive elimination 172. (b) C(sp2)–N(sp2) reductive elimination from a stable cyclometaled AuIII complex 175.......Page 46
Figure 28. Catalytic scheme of the oxidative addition, transmetalation, and reductive elimination from a AuI tricoordinate species to form a C(sp2)–C(sp2) bond 93.......Page 47
Figure 30. Example of an isolated Au-hydride complex 201.......Page 48
Figure 32. Synthetic scheme of the synthesis of oxytenes from allenols featuring a AuIII-catalyzed β -hydride elimination step.......Page 49
Figure 35. Isolation of β-hydride elimination products via AuIII alkyl complexes. Upon warming the four-coordinate AuIII complex the β-hydride elimination occurs 207.......Page 50
Figure 37. Generic illustration of migratory insertion of an olefin into a metal complex. The square in the figure represents a vacant coordination site to the metal. Note that oxidation states do not change during migratory insertion.......Page 51
Summary......Page 52
References......Page 53
Introduction......Page 68
Scheme 2. An indirect strategy for accessing trans alkenes through hydrosilylation 3.......Page 69
Figure 1. Density functional theory (DFT)-located pathways for Markovnikov and anti-Markovnikov hydrosilylation. The relative energies for the rate-determining TSs are given 5.......Page 70
Figure 3. M06-computed energy profile (kcal·mol-1) for hydrosilylation of propyne 10.......Page 71
Figure 4. Pathway to isomerization of the key ruthenium–vinyl intermediate complexes that dictates E/Z-product selectivity 11.......Page 72
Scheme 4. An alternative strategy for accessing trans alkenes directly from alkynes through direct hydrogenation.......Page 73
Figure 5. Isolation of a key ruthenium–carbene species during the [Cp*Ru(cod)Cl] hydrogenation 18.......Page 74
Scheme 6. The overall predicted mechanism highlighting the productive cycle (black) and unproductive cycle that leads to side product formation (blue).......Page 75
Figure 7. Orbital interaction diagrams describing the bonding between Cp*RuCl and (a) 2-butyne and (b) 2-butene 20.......Page 76
Scheme 7. Directed hydrostannation of propargyl alcohols catalyzed by [Cp*RuCl]4 4.......Page 77
Scheme 8. Hydroboration of internal alkynes using a [Cp*Ru(MeCN)3]PF6 catalyst 26.......Page 78
References......Page 79
Introduction......Page 82
Scheme 1. Class III Dioxygenase Enzymes: GDO, SDO, and HNDO......Page 83
Figure 1. X-ray structure for the active site of GDO (PDB 3BU7) and SDO with bound gentisate (PDB 3NL1), salicylate (PDB 3NJZ), and naphthoate (PDB 3NKT).......Page 84
Results and Discussion......Page 85
Reactivity Studies......Page 86
Figure 2. Oak Ridge thermal ellipsoid plot of 2 (50% probability). H-atoms have been removed for clarity.......Page 87
Scheme 5. Proposed Mechanism for the Dioxygenation of 1,4-Dihydroxy-2-naphthoate 33......Page 88
Experimental......Page 89
[Fe(T1Et4iPrIP)(sal)] (2)......Page 90
Acknowledgments......Page 91
References......Page 92
Mechanism of Catalysis by RuIV–Oxo and RuIII–Oxyl Species......Page 96
Radical Rebound Mechanism of C–H Bond Hydroxylation......Page 97
Alkene Epoxidation......Page 98
Figure 2. Structure diagrams of Ru(tpy)(2-quinolinecarboxylate)Cl isomers 3a and 3b 31.......Page 100
Figure 3. Structure diagrams of BOX ligand epoxidation catalysts 4–7 32.......Page 101
Figure 4. DFT optimized transition states of the RDS for epoxidation of 4-vinylcyclohexene by 4a (a) and 4b (b). Energy barriers are given in kcal/mol and interatomic distances are given in Å. Reprinted with permission from reference 32. Copyright 2011 American Chemical Society.......Page 102
Figure 6. Structure diagrams of Ru–NHC epoxidation catalysts 9–10 (3839) and 11a–13 40.......Page 103
Scheme 3. General mechanism of radical non-rebound C–H bond hydroxylation.......Page 104
Figure 9. Structure diagram of [Ru(NHC)(bpy)(MeCN)2](OTf)(PF6) 17 51.......Page 106
Figure 11. Structure diagrams of [Ru(tpaH)(bpy)(O)](PF6)3, 19, and its rebound product with cumene, 20 53.......Page 107
References......Page 108
Introduction......Page 114
Ru (Phosphine)......Page 115
Figure 1. Ru NPs stabilized by dppb ligands.......Page 116
Ru–Pt (Phosphine)......Page 117
Ru (N-Heterocyclic Carbene)......Page 118
Figure 4. The imidazolium salts, tBu·NHC·HCl (left) and IPr·NHC·HCl (right), and the Ru NPs stabilized by the corresponding NHC ligands.......Page 119
Figure 5. Rh NPs stabilized by the IPr·NHC ligand and the imidazolium salt.; the hashed line indicates physical adsorption of an ionic stabilizer.......Page 120
Pd (Dodecylthiolate)......Page 122
Figure 7. Dodecylthiolate [S(CH2)11CH3]-stabilized Pd NPs.......Page 123
Pd (Alkylthiolate and Arylthiolate)......Page 124
Figure 8. Ir NPs stabilized by [P4W30Nb6O123]16− polyoxoanions and the counter ions: sodium and tetrabutylammonium cations.......Page 125
Ir (Dodecylthiolate)......Page 126
Ir (Citrate)......Page 127
Pt (Carbonyl and Hydroxide)......Page 128
Figure 11. Hydroxide- and carbonyl-stabilized Pt NPs.......Page 129
Figure 13. (a) p-Phenylenediamine and carbonyl stabilizers on Pt NPs, (b) Hexyldecylamine stabilizer on Pt NPs without carbonyl.......Page 130
Pt {NHC Ligand and Na3[PtIIMe(OH2)(NHC)2] Ionic Stabilizer}......Page 132
Figure 15. The synthesis of Pt NPs that are dually stabilized by the NHC ligands and the Na3[PtIIMe(OH2)(NHC)2] ionic stabilizers. The hashed line indicates physical adsorption.......Page 133
Figure 16. Dodecylthiolate-stabilized Au NPs.......Page 134
Au (Citrate, Citric Acid, and Thiolate)......Page 135
Figure 17. Secondary phosphine oxide ligands as stabilizers for Au NPs.......Page 136
Summary......Page 137
References......Page 140
Introduction......Page 146
Principles of Photocatalysis......Page 147
Figure 2. Schematic diagram for the reaction steps in: (a) photodegradation of aqueous organic pollutants 21, (b) photocatalytic CO2 reduction, and (c) photocatalytic N2 reduction 24. (a) Reproduced with permission from ref 21. Copyright 2012 Elsevier. (c) Reproduced with permission from ref 24. Copyright 2018 Royal Chemical Society.......Page 148
Figure 3. Models for selected TiO2 Q1D nanostructures.......Page 149
Figure 4. Model of TiO2 octahedron showing edge-sharing and corner-sharing. Notes: black circles correspond to oxygen atom and grey circles correspond to titanium atom.......Page 150
Figure 6. Rutile unit cell. Note: black circle corresponds to oxygen atoms.......Page 151
Sol–Gel Method......Page 152
Sol Method......Page 153
Hydrothermal Method......Page 154
Figure 13. Nanorods TEM image synthesized using a solvothermal method 40. Note: TiO2 nanorods were synthesized by mixing titanium isopropoxide, anhydrous toluene, and oleic acid at 250 °C for 20 h. Reproduced with permission from ref 40. Copyright 2003 Elsevier.......Page 155
Figure 14. SEM images of TiO2 nanowires SEM images grown on a Si(100) substrate using the PVD method 41. Reproduced with permission from ref 41. Copyright 2005 Elsevier.......Page 156
Direct Oxidation Method......Page 157
Plasma-Assisted Method......Page 158
Figure 18. Illustration of an open-air APPJ setup for depositing TiO2 coating on a flat substrate 53. Reproduced with permission from ref 53. Copyright 2019 John Wiley and Sons.......Page 159
Figure 19. (a) Schematic of DBD reactor for synthesizing anatase TiO2, and (b) TEM image of DBD TiO2 nanocrystal 55. Reproduced with permission from ref 55. Copyright 2007 John Wiley and Sons.......Page 160
Modifying Morphology and Nanostructure......Page 161
Nonmetal Doped-TiO2......Page 162
Carbon-Based TiO2 Composites......Page 163
Graphene Based TiO2......Page 164
Depositing Metal Nanoparticles......Page 165
Figure 28. Electron transfer in the CdS/TiO2 system 19. Reproduced with permission from ref 19. Copyright 1995 American Chemical Society.......Page 166
Noncarbonaceous 2D Materials......Page 167
Outlook......Page 168
References......Page 169
Introduction......Page 178
Figure 2. Robson network containing a T-symmetry tetranitrile and CuI (1).......Page 179
Metal–Organic Framework Nodes as Catalysts......Page 180
Lewis Acid Catalytic Sites for CO2 Cycloaddition......Page 181
Figure 5. A Zn-MOF (3(Zn)) for cyclization of epoxides with carbon dioxide. (a) Synthesis and X-ray structure of 3(Zn). (b) Application of 3(Zn) for the cycloaddition of CO2 and propylene oxide.......Page 182
Photocatalysis......Page 183
Figure 8. An intercalated two-dimensional (2D) CuII framework (6). (a) Synthesis of 6 from H3TCTA and CuII precursor. (b) Photocatalyzed CuAAC reactions using 6.......Page 184
Figure 11. Synthesis of ZnII paddlewheel framework 9.......Page 185
Figure 12. Zn paddlewheel porphyrin / 1,4-diazabicyclo[2.2.2]octane framework 11.......Page 186
Figure 14. Chiral Cu-MOF 13. (a) Synthesis of 13 from a BINOL ligand and CuII. (b) Use of 13 to catalyze the asymmetric Diels–Alder reaction between isoprene and maleimides.......Page 187
Figure 15. Chiral Zn-MOF 14. (a) Synthesis and X-ray structure of 14. (b) Application of 14 for the enantioselective ring-opening of cis-stilbene oxide by aromatic amines.......Page 188
Figure 16. The ZrIV–oxo framework 15. (a) Synthesis of 15 from 1,4-benzene dicarboxylic acid and ZrCl4. (b) Proposed mechanism of ethanol dehydration catalyzed by 15.......Page 189
Figure 17. Use of 15 for Fischer esterification. (a) Net transformation of levulinc acid to ethyl levulinate with 15 as catalyst. (b) Proposed mechanism for Fischer esterification using 15.......Page 190
Figure 19. In-MOF 17. (a) Synthesis of 17 from a tritopic ligand and InIII precursor. (b) A multicomponent reaction catalyzed by 17.......Page 191
Figure 20. Cerium Framework 18. (a) Synthesis of 18 from trimesic acid and ceric ammonium nitrate. (b) Oxidation of benzyl alcohol to benzaldehyde catalyzed by 18 and TEMPO. (c) Proposed mechanism of the 18/TEMPO-catalyzed oxidation of benzyl alcohol.......Page 192
Catalysts Derived from Postsynthetic Modification of the SBU......Page 193
Catalytically Active Metals Immobilized on the SBU......Page 194
Figure 24. A Ti-based framework as a support for cocatalysis. (a) Synthesis of 21. (b) Reduction sequence to access 21-CoH(thf). (c) Use of 21-CoH(thf) for the hydrogenation of arenes. (d) Use of 21-CoH(thf) for the hydrogenation of heteroarenes.......Page 195
Figure 25. Synthesis of 23 and conversion to 23-Me. (a) Synthesis of 23 from H3btc and a Zr–oxide precursor. (b) Conversion of 23 to 23-OH, 23-Cl2, and ultimately to 23-Me.......Page 196
Figure 26. Synthesis of Ba-based MOF 24.......Page 197
Figure 28. Triazine-Eu MOF 26. (a) Synthesis of 26 from H3TATMA and EuIII precursor. (b) General Knoevenagel condensation between aromatic aldehydes and malononitrile catalyzed by 26.......Page 198
Summary and Future Applications......Page 199
References......Page 200
Meng Zhou......Page 210
Indexes......Page 212
Author Index......Page 214
C......Page 216
E......Page 217
G......Page 218
S......Page 219




پست ها تصادفی