توضیحاتی در مورد کتاب :
سوزانندهها پدیدههای طبیعی هستند که الگوهای نوری را در رنگین کمان یا از طریق لیوانهای نوشیدن ایجاد میکنند و شبکههای نوری در پایین استخرهای شنا ایجاد میکنند. تنها در سال های اخیر دانشمندان شروع به ایجاد مصنوعی سوزاننده ساده با نور لیزر کرده اند. با این حال، این درک قبلاً به پیشرفت در تصویربرداری پیشرفته، لیتوگرافی و ریز دستکاری کمک کرده است.
در این کتاب، الساندرو زانوتی از بسیاری جهات در کاستیک پیشگام بوده و زمینه اپتیک سوزاننده مصنوعی را ایجاد کرده است. او از طراحی سوزاننده برای سفارشی کردن نور لیزر با شدت بالا استفاده می کند. این برای ماشینکاری مبتنی بر لیزر، سنجش، میکروسکوپ و ارتباطات ایمن بسیار مهم است. نویسنده همچنین یک مشکل طولانی مدت در مورد منشاء امواج سرکش که به طور طبیعی در دریا ظاهر می شود و می تواند عواقب فاجعه باری داشته باشد را حل می کند. او با استفاده از یک قیاس نوری گسترده، پراکندگی مواد سوزاننده در محیط های تصادفی را به عنوان منشا امواج سرکش شناسایی می کند و نشان می دهد که چگونه برهمکنش غیرخطی نور-ماده احتمال آنها را افزایش می دهد.
فهرست مطالب :
Supervisor’s Foreword
Peer-Reviewed PublicationsA. Zannotti, F. Diebel, M. Boguslawski, C. Denz, Optical catastrophes of the swallowtail and butterfly beams, New J. Phys., 19, 053004 (2017).A. Zannotti, M. Rüschenbaum, C. Denz, Pearcey solitons in curved nonlinear photonic caustic lattices, J. Opt., 19, 094001 (2017).A. Zannotti, F. Diebel, C. Denz, Dynamics of the optical swallowtail catastrophe, Optica, 4, 1157 (2017).A. Zannotti, J. M. Vasiljević, D. V. Timotijević, D. M. Jović Savić, C. Denz, Visualizing the energy flow of tailored light, Adv. Opt. Mat., 6, 1701355 (2018).A. Zannotti, C. Denz, M. A. Alonso, M. R. Dennis, Shaping caustics into propagation-invariant light, submitted to Nature Communications (2020). Publications Independent of this ThesisA. Zannotti, F. Diebel, M. Boguslawski, C. Denz, Chiral light in helically twisted photonic lattices, Adv. Opt. Mat., 5, 1600629 (2017).J. M. Vasiljević, A. Zannotti, D. V. Timotijević, C. Denz, D. M. Jović Savić, Creating aperiodic photonic structures by synthesized Mathieu-Gauss beams, Phys. Rev. A, 96, 023840 (2017).J. M. Vasiljević, A. Zannotti, D. V. Timotijević, C. Denz, D. M. Jović Savić, Elliptical vortex necklaces in Mathieu lattices, Phys. Rev. A, 97, 033848 (2018).A. Zannotti, J. M. Vasiljević, D. V. Timotijević, D. M. Jović Savić, C. Denz, Morphing discrete diffraction in nonlinear Mathieu lattices, Opt. Lett., 44, 1592 (2019).A. Zannotti, J. M. Vasiljević, D. V. Timotijević, D. M. Jović Savić, C. Denz, Expanding Discrete Optics with Mathieu Beams, Optics & Photonics News, December, 52 (2019).J. M. Vasiljević, A. Zannotti, D. V. Timotijević, C. Denz, D. M. Jović Savić, Light propagation in aperiodic photonic lattices created by synthesized Mathieu-Gauss beams, submitted to Appl. Phys. Lett. (2020). Conference ProceedingsA. Zannotti, F. Diebel, M. Boguslawski, C. Denz, Discrete vortex propagation in three-dimensional twisted waveguide arrays, Nonlinear Optics, Kauai, Hawaii, USA, NM3B.7 (2015).A. Zannotti, F. Diebel, M. Boguslawski, C. Denz, Caustic diffraction catastrophes: Optical swallowtail and butterfly beams, Nonlinear Photonics, Sydney, Australia, NW2A.2 (2016).A. Zannotti, F. Diebel, M. Rüschenbaum, C. Denz, Controlling light in Airy and higher-order caustic photonic structures, Photorefractive Photonics, Qingdao, China, J. Phys.: Conf. Ser. 867, 012022 (2017).C. Mamsch, A. Zannotti, C. Denz, Embedding umbilic catastrophes in artificially designed caustic beams, CLEO Europe, Munich, Germany, EF_4_5 (2017).A. Zannotti, C. Mamsch, M. Rüschenbaum, C. Denz, Realizing curved nonlinear photonic caustic lattices by tailored optical catastrophes, Nonlinear Optics, Waikoloa, Hawaii, USA, NF2A.5 (2017).A. Zannotti, C. Mamsch, M. Rüschenbaum, C. Denz, Caustic-based nonlinear photonic lattices, Nonlinear Photonics, Zurich, Switzerland, NpTh3I.1 (2018).A. Zannotti, C. Mamsch, M. Rüschenbaum, C. Denz, Nonlinear light propagation in hexagonal morphing umbilic caustic lattices, Nonlinear Photonics, Zurich, Switzerland, NpTh3I.4 (2018).A. Zannotti, C. Mamsch, M. Rüschenbaum, C. Denz, Caustic light-based fabrication of advanced photonic structures, SPIE Optics + Photonics, San Diego, California, USA, Proc. SPIE 10720, Nanophotonic Materials XV, 1072002 (2018).A. Zannotti, D. Ehrmanntraut, C. Denz, Rogue waves by caustic networks in random media, Photorefractive Photonics and beyond, Gérardmer, France, (2019).A. Zannotti, D. Ehrmanntraut, C. Denz, Enhanced optical rogue waves by scattering caustic networks in tailored disorder, Nonlinear Optics, Waikoloa, Hawaii, USA, (2019).
Publications Independent of this Thesis
Conference Proceedings
Acknowledgement
Contents
1 Introduction and Motivation
References
2 Waves, Caustics, and Catastrophes
2.1 Waves in Structured Nonlinear Photonic Media
2.2 Caustics are Catastrophes in Light
2.2.1 Caustics as Singularities of Gradient Maps
2.2.2 Diffraction Catastrophe Integrals
2.2.3 The Topologies of Catastrophes
References
3 Realization and Exploration of Structured Light and Photonic Structures
3.1 Spatially Structured Light
3.1.1 Creating Scalar Structured Light Fields with Phase-Only Spatial Light Modulators
3.1.2 Digital Holographic Phase Metrology
3.2 Photorefractive Nonlinearity in SBN
3.2.1 Linear Electro-optic Effect
3.2.2 Band Transport Model and Anisotropic Approximation
3.3 Refractive Index Modulations in Photorefractive SBN Crystals
3.3.1 Optical Induction of Refractive Index Modulations
3.3.2 Analysis of Optically Induced Photonic Structures
References
4 Elementary Optical Catastrophes and Caustic-Based Photonic Structures
4.1 Evaluation of the Oscillatory Integrals of Diffraction Catastrophes
4.2 Optical Catastrophes in Light
4.2.1 Airy and Pearcey Beams
4.2.2 Optical Swallowtail and Butterfly Catastrophes
4.2.3 Hyperbolic and Elliptic Umbilic Beams
4.3 Caustic Light-Based Fabrication of Photonic Structures
4.3.1 Waveguiding in Caustic Photonic Lattices
4.3.2 Formation of a Pearcey Soliton
4.3.3 Elliptic-Umbilic-Based Morphing Lattices
References
5 Propagation-Invariant Caustics
5.1 Caustics in Propagation-Invariant Light
5.1.1 The Bessel Beam Caustic
5.2 Visualising the Energy Flow of Tailored Light
5.3 Shaping Caustics into Propagation-Invariant Light
5.3.1 Inverse Caustic Design I: Differential Equation
5.3.2 The Bessel-Lattice Beam
5.3.3 Self-healing and Momentum Transfer in Tailored Caustics
5.3.4 Inverse Caustic Design II: Bessel Pencil
References
6 Caustic Networks and Rogue Waves
6.1 Formation of Caustic Networks
6.1.1 Caustic Networks from Gaussian Random Fields
6.1.2 Analysing the Evolution of Caustic Networks
6.2 Enhanced Random Focusing in Nonlinear Anisotropic Media
6.2.1 Focusing by Modulation Instabilities
6.2.2 Enhanced Focusing of Caustic Networks
6.3 Random Scattering of Caustic Networks
6.3.1 Extreme Events by Scattering at Random Potentials
6.3.2 Rogue Wave Formation in Weakly Scattered Caustic Networks
References
7 Conclusion and Outlook
References
Appendix A Fourier Transform, Dirac Delta Function, Convolution, and Correlation
A.1 Fourier Transform
A.2 Dirac Delta Distribution
A.3 Convolution and Correlation
Appendix B Solving the Nonlinear Schrödinger Equation Numerically
Appendix C Numerical Calculation of Optically Induced Refractive Index Modulations in Biased SBN Crystals
Appendix D Angular Spectrum Method and Fresnel Propagation
D.1 Angular Spectrum Method
D.2 Fresnel Propagation
Appendix E Complex Gaussian Integral and Tschirnhaus Transformation
E.1 Complex Gaussian Integral
E.2 Tschirnhaus Transformation
References
Appendix Curriculum Vitae | Alessandro Zannotti
توضیحاتی در مورد کتاب به زبان اصلی :
Caustics are natural phenomena, forming light patterns in rainbows or through drinking glasses, and creating light networks at the bottom of swimming pools. Only in recent years have scientists started to artificially create simple caustics with laser light. However, these realizations have already contributed to progress in advanced imaging, lithography, and micro-manipulation.
In this book, Alessandro Zannotti pioneers caustics in many ways, establishing the field of artificial caustic optics. He employs caustic design to customize high-intensity laser light. This is of great relevance for laser-based machining, sensing, microscopy, and secure communication. The author also solves a long standing problem concerning the origin of rogue waves which appear naturally in the sea and can have disastrous consequences. By means of a far-reaching optical analogy, he identifies scattering of caustics in random media as the origin of rogue waves, and shows how nonlinear light-matter interaction increases their probability.