توضیحاتی در مورد کتاب Chemical Modifications of Graphene-Like Materials
نام کتاب : Chemical Modifications of Graphene-Like Materials
عنوان ترجمه شده به فارسی : اصلاحات شیمیایی مواد شبه گرافن
سری :
نویسندگان : Nguyen Thanh Tien, Thi Dieu Hien Nguyen, Vo Khuong Dien, Wen-Dung Hsu, Shih-Yang Lin, Yu-Ming Wang, Ming-Fa Lin
ناشر : World Scientific Publishing
سال نشر : 2024
تعداد صفحات : 604
ISBN (شابک) : 9789811267932 , 9789811267956
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 28 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover
Half Title
Chemical Modifications of Graphene-Like Materials
Copyright
Preface
Contents
1. Introduction
References
2. Chemical and Physical Environments
2.1. Chemical Modifications
2.1.1. Chemical absorptions
2.1.2. Intercalations
2.1.3. Substitutions
2.1.4. Decorations
2.1.5. Heterojunctions
2.2. Physical Perturbations
2.2.1. Stationary fields: Uniform and non-uniform electric and magnetic fields
2.2.2. Electron beams
2.2.3. Electromagnetic waves
2.2.4. Mechanical stresses
2.2.5. Thermal excitations
2.2.5.1. Phonon energy dispersions
2.2.5.2. Phonon–phonon scatterings and thermal conductivity
References
3. 3d Transition Metal-Adsorbed Graphene
3.1. Introduction
3.2. Computational Method
3.3. Discussion and Results
3.3.1. Geometric structure
3.3.2. Diversified electronic and magnetic properties
3.4. Conclusions
References
4. 4f Rare-Earth Element-Adsorbed Graphene
4.1. Introduction
4.2. Computational Details
4.3. Results and Discussions
4.4. Concluding Remarks
References
5. Intercalation of 4d Transition Metals into Graphite
5.1. Graphite: Structure, Properties, and Applications
5.1.1. Structural characteristics
5.1.2. Electronic properties
5.1.3. Emergent and potential applications
5.2. Modifications of Graphite
5.2.1. Graphite intercalation compounds
5.2.2. Transition metal-intercalated graphite
5.3. Zr-intercalated Graphite
5.4. Nb-intercalated Graphite
References
6. Intercalation of 5d Rare-Earth Elements into Graphite
6.1. The Optimal Crystals of Graphite and Graphite Pa/U Intercalation Compounds
6.2. Unusual Band Structures with Atom and Spin Dominances
6.3. Non-uniform Charge- and Spin-density Distributions
6.4. Atom-, Orbital-, and Spin-decomposed Densities of States
6.5. Unusual Dielectric Functions, Energy Loss Spectra, Reflectances, and Absorption Coefficients
6.6. Summary
References
7. Featured Properties of 5d Transition Metal Substitutions into Graphene
7.1. Introduction
7.2. Computational Techniques
7.3. Optimal Stability
7.4. Wave Vector-independent Band Characteristics
7.5. Rich Atom- and Orbital-decomposed van Hove Singularities
7.6. Spatial Charge Densities and Spin Configurations
7.7. Optical Properties
7.8. Concluding Remarks and Future Perspectives
References
8. Substitutions of 4f Rare-Earth Elements into Graphene
8.1. La- and Gd-adatom Substitutions in Graphene Monolayer
8.2. Featured Band Structures
8.3. Charge and Spin-density Distributions
8.4. Van Hove Singularities
8.5. Spin-density Distributions
References
9. Decoration of Graphene Nanoribbons with 5d Transition-Metal Elements
9.1. Introduction
9.2. Geometric Structures for Transition Metal-decorated Graphene Nanoribbon
9.3. Energy Band Structures and Density of States
9.4. Charge Distributions, Charge Variations, and Optical Properties
9.5. Concluding Remarks
Acknowledgments
References
10. Decoration of Graphene Nanoribbons with 5f Rare-Earth Elements
10.1. Np/Pu Decoration of Armchair and Zigzag Graphene Nanoribbons
10.2. Unusual 1D Band Structures and Wave Functions
10.3. Highly Anisotropic Charge/Spin-density Distributions
10.4. Rich van Hove Singularities
10.5. Unique Optical Transitions
10.6. Concise Conclusions
References
11. Heterojunctions of Mono-/Bilayer Graphene on Transition-Metal Substrates
11.1. Unique Heterojunction Crystal Structures
11.2. Rich Band Structures and Wave Functions
11.3. Spatial Modulations of Charge Density Distributions
11.4. Atom- and Orbital-decomposed Van Hove Singularities
11.5. Quantum Quasi-particles in Optical Excitations
11.6. Concise Pictures of Quantum Quasi-particles
References
12. Heterojunctions of Mono-/Bilayer Graphene on Rare-Earth Metal Substrates
12.1. Monolayer graphene on CeO2 substrate
12.2. AB-stacked bilayer graphene/CeO2
References
13. Structural Diversity and Optoelectronic Properties of Chemically Modified Pentagonal Quantum Dots
13.1. Introduction
13.2. Methodology
13.3. Results and Discussion
13.3.1. Effect of size on electronic and optical properties of PGQD
13.3.2. Effect of doping on electronic and optical properties of PGQD
13.4. Effect of Passivation on Electronic and Optical Properties of PGQDs
13.5. Conclusion
References
14. Graphene Quantum Dots: Possible Structure, Application, and Effect of Oxygen-Containing Functional Group
14.1. Introduction
14.2. Doped GQDs
14.3. GQD-based Gold Nanocomposite
14.4. Synthesis
14.5. Effect of Oxygen-Containing Functional Group on the Properties and Applications
14.6. Conclusion and Outlook
References
15. Bonding, Interaction, and Impact of Hydrogen on 2D SiC Materials
15.1. Introduction
15.2. Calculation
15.2.1. SIESTA simulation
15.2.2. Zero-point energy and defect calculations
15.3. Results and Discussions
15.3.1. Possible hydrogen adsorption sites
15.3.2. Structural defects of 2D silicon carbide
15.4. Conclusions
References
16. Structural, Electronic, and Electron Transport Properties of Chemically Modified Pentagonal SiC2 Nanoribbons
16.1. Introduction
16.2. Methodology
16.3. Results and Discussion
16.3.1. Structural properties of the various edge ribbons
16.3.2. Electronic properties of the various edge ribbons
16.3.3. Structural properties of the uniaxial strain ribbons
16.3.4. Electronic properties of the uniaxial strain ribbons
16.3.5. Electron transport of the uniaxial strain ribbons
16.4. Potential applications
16.4.1. Heterojunctions
16.4.2. Anode material
16.4.3. Gas sensing
16.5. Conclusion
References
17. Hydrogen Adsorption onto Two-Dimensional Germanene and Its Structural Defects: Ab Initio Investigation
17.1. Introduction
17.2. Calculation Methods
17.2.1. Computational method
17.2.2. Zero-point energy calculation
17.2.3. Defect calculations
17.3. Results and Discussions
17.3.1. Hydrogen adsorption on germanene
17.3.2. Germanene structural defects
17.4. Conclusions
Acknowledgments
Open Issues
References
18. Potential Applications
18.1. 3D Printing Principles and Applications
18.2. Agriculture
18.2.1. Plant growth stimulators and fertilizers
18.2.2. Nanoencapsulation and smart delivery systems
18.2.3. Antifungal and antibacterial agents
18.3. Biology
18.4. Electronic Devices
References
19. Open Issues and Near-Future Focuses
19.1. Emergent Materials
19.2. Time-Dependent LDA
19.3. Semiconductor Compounds
19.4. Inter-Metallic Compounds
19.5. Ion Transports
19.6. Solar Cells
19.7. Hydrogen Energy
19.8. Group-Iv Nanotubes and Nanoribbons
References
20. Concluding Remarks
Index