Chemical principles: the quest for insight

دانلود کتاب Chemical principles: the quest for insight

35000 تومان موجود

کتاب اصول شیمیایی: جستجوی بینش نسخه زبان اصلی

دانلود کتاب اصول شیمیایی: جستجوی بینش بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 3


توضیحاتی در مورد کتاب Chemical principles: the quest for insight

نام کتاب : Chemical principles: the quest for insight
ویرایش : 6. ed
عنوان ترجمه شده به فارسی : اصول شیمیایی: جستجوی بینش
سری :
نویسندگان : , ,
ناشر : Freeman
سال نشر : 2013
تعداد صفحات : 1129
ISBN (شابک) : 1429288973 , 1464124671
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 278 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.

توضیحاتی در مورد کتاب :


اصول شیمی که برای دروس شیمی عمومی شامل حساب دیفرانسیل و انتگرال نوشته شده است، به دانش آموزان کمک می کند تا با نشان دادن ارتباط بین ایده های شیمیایی اساسی و کاربردهای آنها، بینش شیمیایی را توسعه دهند. برخلاف سایر متون، با تصویری دقیق از اتم شروع می‌شود و سپس به سمت مرز شیمی ساخته می‌شود، و پیوسته نشان می‌دهد که چگونه می‌توان مسائل را حل کرد، درباره طبیعت و ماده فکر کرد و مفاهیم شیمیایی را مانند شیمیدان‌های فعال تجسم کرد. انعطاف‌پذیری در سطح بسیار مهم است و تا حد زیادی از طریق برچسب‌گذاری واضح (جداسازی در کادرها) پوشش حساب دیفرانسیل و انتگرال در متن ایجاد می‌شود: مدرسان این گزینه را دارند که آیا حساب دیفرانسیل و انتگرال را در پوشش موضوعات بگنجانند یا نه. ادغام چند رسانه ای اصول شیمی عمیق تر از هر متن دیگری برای این دوره است. از طریق کتاب الکترونیکی منحصربه‌فرد، ChemPortal جامع، نمادهای Living Graph که متن را به وب متصل می‌کند، و مجموعه کاملی از انیمیشن‌ها، دانش‌آموزان می‌توانند از منابع فراوانی که در دسترس هستند برای کمک به یادگیری و درک عمیق‌تر استفاده کامل کنند.

فهرست مطالب :


Front Cover Title Page Copyright Page Contents in Brief CONTENTS (with direct page links) Letter from the Authors (to Instructors) Preface FUNDAMENTALS Introduction and Orientation Chemistry and Society Chemistry: A Science at Three Levels How Science Is Done The Branches of Chemistry Mastering Chemistry A Matter and Energy A.1 Physical Properties A.2 Force A.3 Energy Exercises B Elements and Atoms B.1 Atoms B.2 The Nuclear Model B.3 Isotopes B.4 The Organization of the Elements Exercises C Compounds C.1 What Are Compounds? C.2 Molecules and Molecular Compounds C.3 Ions and Ionic Compounds Exercises D The Nomenclature of Compounds D.1 Names of Cations D.2 Names of Anions D.3 Names of Ionic Compounds TOOLBOX D.1 • How to Name Ionic Compound D.4 Names of Inorganic Molecular Compounds TOOLBOX D.2 • How to Name Simple Inorganic Molecular Compounds D.5 Names of Some Common Organic Compounds Exercises E Moles and Molar Masses E.1 The Mole E.2 Molar Mass Exercises F Determination of Chemical Formulas F.1 Mass Percentage Composition F.2 Determining Empirical Formulas F.3 Determining Molecular Formulas Exercises G Mixtures and Solutions G.1 Classifying Mixtures G.2 Separation Techniques G.3 Concentration G.4 Dilution TOOLBOX G.1 • How to Calculate the Volume of Stock Solution Required for a Given Dilution Exercises H Chemical Equations H.1 Symbolizing Chemical Reactions H.2 Balancing Chemical Equations Exercises I Aqueous Solutions and Precipitation I.1 Electrolytes I.2 Precipitation Reactions I.3 Ionic and Net Ionic Equations I.4 Putting Precipitation to Work Exercises J Acids and Bases J.1 Acids and Bases in Aqueous Solution J.2 Strong and Weak Acids and Bases J.3 Neutralization Exercises K Redox Reactions K.1 Oxidation and Reduction K.2 Oxidation Numbers: Keeping Track of Electrons TOOLBOX K.1 • How to Assign Oxidation Numbers K.3 Oxidizing and Reducing Agents K.4 Balancing Simple Redox Equations Exercises L Reaction Stoichiometry L.1 Mole-to-Mole Predictions L.2 Mass-to-Mass Predictions TOOLBOX L.1 • How to Carry Out Mass-to-Mass Calculations L.3 Volumetric Analysis TOOLBOX L.2 • How to Interpret a Titration Exercises M Limiting Reactants M.1 Reaction Yield M.2 The Limits of Reaction TOOLBOX M.1 • How to Identify the Limiting Reactant M.3 Combustion Analysis Exercises Chapter 1 THE QUANTUM WORLD Investigating Atoms 1.1 The Nuclear Model of the Atom 1.2 The Characteristics of Electromagnetic Radiation 1.3 Atomic Spectra Quantum Theory 1.4 Radiation, Quanta, and Photons 1.5 The Wave–Particle Duality of Matter 1.6 The Uncertainty Principle 1.7 Wavefunctions and Energy Levels BOX 1.1 • Frontiers of Chemistry: Nanocrystals and Fluorescence Microscopy Exercises Chapter 2 QUANTUM MECHANICS IN ACTION: ATOMS The Hydrogen Atom 2.1 The Principal Quantum Number 2.2 Atomic Orbitals 2.3 Electron Spin BOX 2.1 • How Do We Know . . . That an Electron Has Spin? 2.4 The Electronic Structure of Hydrogen Many-Electron Atoms 2.5 Orbital Energies 2.6 The Building-Up Principle TOOLBOX 2.1 • How to Predict the Ground-State Electron Configuration of an Atom 2.7 Electronic Structure and the Periodic Table The Periodicity of Atomic Properties 2.8 Atomic Radius 2.9 Ionic Radius 2.10 Ionization Energy 2.11 Electron Affinity 2.12 The Inert-Pair Effect 2.13 Diagonal Relationships 2.14 The General Properties of the Elements Exercises Chapter 3 CHEMICAL BONDS Ionic Bonds 3.1 The Ions That Elements Form 3.2 Lewis Symbols 3.3 The Energetics of Ionic Bond Formation 3.4 Interactions Between Ions Covalent Bonds 3.5 Lewis Structures 3.6 Lewis Structures of Polyatomic Species TOOLBOX 3.1 • How to Write the Lewis Structure of a Polyatomic Species 3.7 Resonance 3.8 Formal Charge TOOLBOX 3.2 • How to Use Formal Charge to Determine the most Likely Lewis Structure Exceptions to the Octet Rule 3.9 Radicals and Biradicals BOX 3.1 • What Has This To Do With . . . Staying Alive? Chemical Self-Preservation 3.10 Expanded Valence Shells 3.11 The Unusual Structures of Some Group 13 Compounds Ionic versus Covalent Bonds 3.12 Correcting the Covalent Model: Electronegativity 3.13 Correcting the Ionic Model: Polarizability The Strengths and Lengths of Covalent Bonds 3.14 Bond Strengths 3.15 Variation in Bond Strength 3.16 Bond Lengths BOX 3.2 • How Do We Know . . . The Length of a Chemical Bond? Exercises MAJOR TECHNIQUE 1 • Infrared Spectroscopy Exercises Chapter 4 MOLECULAR SHAPE AND STRUCTURE BOX 4.1 • Frontiers of Chemistry: Drugs By Design and Discovery The VSEPR Model 4.1 The Basic VSEPR Model 4.2 Molecules with Lone Pairs on the Central Atom TOOLBOX 4.1 • How to Use the Vsepr Model 4.3 Polar Molecules Valence-Bond Theory 4.4 Sigma and Pi Bonds 4.5 Electron Promotion and the Hybridization of Orbitals 4.6 Other Common Types of Hybridization 4.7 Characteristics of Multiple Bonds Molecular Orbital Theory BOX 4.2 • How Do We Know . . . That Electrons are Not Paired? 4.8 The Limitations of Lewis’s Theory 4.9 Molecular Orbitals 4.10 Electron Configurations of Diatomic Molecules BOX 4.3 • How Do We Know . . . The Energies of Molecular Orbitals Toolbox 4.2 • How to Determine the Electron Configuration and Bond Order of a Homonuclear Diatomic Species 4.11 Bonding in Heteronuclear Diatomic Molecules 4.12 Orbitals in Polyatomic Molecules Exercises MAJOR TECHNIQUE 2 • Ultraviolet and Visible Spectroscopy Exercises Chapter 5 THE PROPERTIES OF GASES The Nature of Gases 5.1 Observing Gases 5.2 Pressure 5.3 Alternative Units of Pressure The Gas Laws 5.4 The Experimental Observations 5.5 Applications of the Ideal Gas Law TOOLBOX 5.1 • How to Use the Ideal Gas Law 5.6 Gas Density 5.7 The Stoichiometry of Reacting Gases 5.8 Mixtures of Gases Molecular Motion 5.9 Diffusion and Effusion 5.10 The Kinetic Model of Gases 5.11 The Maxwell Distribution of Speeds BOX 5.1 • How Do We Know . . . The Distribution of Molecular Speeds? Real Gases 5.12 Deviations from Ideality 5.13 The Liquefaction of Gases 5.14 Equations of State of Real Gases Exercises Chapter 6 LIQUIDS AND SOLIDS Intermolecular Forces 6.1 The Origin of Intermolecular Forces 6.2 Ion–Dipole Forces 6.3 Dipole–Dipole Forces 6.4 London Forces 6.5 Hydrogen Bonding 6.6 Repulsions Liquid Structure 6.7 Order in Liquids 6.8 Viscosity and Surface Tension Solid Structures 6.9 Classification of Solids BOX 6.1 • How Do We Know . . . What a Surface Looks Like? 6.10 Molecular Solids 6.11 Network Solids 6.12 Metallic Solids 6.13 Unit Cells 6.14 Ionic Structures The Impact on Materials 6.15 Liquid Crystals 6.16 Ionic Liquids Exercises MAJOR TECHNIQUE 3 • X-Ray Diffraction Exercises Chapter 7 INORGANIC MATERIALS Metallic Materials 7.1 The Properties of Metals 7.2 Alloys 7.3 Steel 7.4 Nonferrous Alloys Hard Materials 7.5 Diamond and Graphite 7.6 Calcium Carbonate 7.7 Silicates 7.8 Cement and Concrete 7.9 Borides, Carbides, and Nitrides 7.10 Glasses 7.11 Ceramics Materials for New Technologies 7.12 Bonding in the Solid State 7.13 Semiconductors 7.14 Superconductors 7.15 Luminescent Materials 7.16 Magnetic Materials 7.17 Composite Materials Nanomaterials 7.18 The Nature and Uses of Nanomaterials 7.19 Nanotubes 7.20 Preparation of Nanomaterials Exercises Chapter 8 THERMODYNAMICS: THE FIRST LAW Systems, States, and Energy 8.1 Systems 8.2 Work and Energy 8.3 Expansion Work 8.4 Heat 8.5 The Measurement of Heat 8.6 The First Law 8.7 A Molecular Interlude: The Origin of Internal Energy Enthalpy 8.8 Heat Transfers at Constant Pressure 8.9 Heat Capacities at Constant Volume and Constant Pressure 8.10 A Molecular Interlude: The Origin of the Heat Capacities of Gases 8.11 The Enthalpy of Physical Change 8.12 Heating Curves BOX 8.1 • How Do We Know . . . The Shape of a Heating Curve? The Enthalpy of Chemical Change 8.13 Reaction Enthalpies 8.14 The Relation Between ΔH and ΔU 8.15 Standard Reaction Enthalpies 8.16 Combining Reaction Enthalpies: Hess’s Law TOOLBOX 8.1 • How to Use Hess’s Law 8.17 Standard Enthalpies of Formation 8.18 The Born–Haber Cycle 8.19 Bond Enthalpies 8.20 The Variation of Reaction Enthalpy with Temperature BOX 8.2 • What Has This To Do With . . . The Environment? Alternative Fuels The Impact on Technology 8.21 The Heat Output of Reactions Exercises Chapter 9 THERMODYNAMICS: THE SECOND AND THIRD LAWS Entropy 9.1 Spontaneous Change 9.2 Entropy and Disorder 9.3 Changes in Entropy 9.4 Entropy Changes Accompanying Changes in Physical State 9.5 A Molecular Interpretation of Entropy 9.6 The Equivalence of Statistical and Thermodynamic Entropies 9.7 Standard Molar Entropies BOX 9.1 • Frontiers of Chemistry: The Quest for Absolute Zero 9.8 Standard Reaction Entropies Global Changes in Entropy 9.9 The Surroundings 9.10 The Overall Change in Entropy 9.11 Equilibrium Gibbs Free Energy 9.12 Focusing on the System 9.13 Gibbs Free Energy of Reaction 9.14 The Gibbs Free Energy and Nonexpansion Work 9.15 The Effect of Temperature Impact on Biology 9.16 Gibbs Free Energy Changes in Biological Systems Exercises Chapter 10 PHYSICAL EQUILIBRIA Phases and Phase Transitions 10.1 Vapor Pressure 10.2 Volatility and Intermolecular Forces 10.3 The Variation of Vapor Pressure with Temperature 10.4 Boiling 10.5 Freezing and Melting 10.6 Phase Diagrams 10.7 Critical Properties Solubility 10.8 The Limits of Solubility 10.9 The Like-Dissolves-Like Rule 10.10 Pressure and Gas Solubility: Henry’s Law 10.11 Temperature and Solubility 10.12 The Enthalpy of Solution 10.13 The Gibbs Free Energy of Solution Colligative Properties 10.14 Molality TOOLBOX 10.1 • How to Use the Molality 10.15 Vapor-Pressure Lowering 10.16 Boiling-Point Elevation and Freezing-Point Depression 10.17 Osmosis TOOLBOX 10.2 • How to Use Colligative Properties to Determine Molar Mass Binary Liquid Mixtures 10.18 The Vapor Pressure of a Binary Liquid Mixture 10.19 Distillation 10.20 Azeotropes The Impact on Biology and Materials 10.21 Colloids 10.22 Bio-Based and Biomimetic Materials BOX 10.1 • Frontiers of Chemistry: Drug Delivery Exercises MAJOR TECHNIQUE 4 • Chromatography Exercises Chapter 11 CHEMICAL EQUILIBRIA Reactions at Equilibrium 11.1 The Reversibility of Reactions 11.2 Equilibrium and the Law of Mass Action 11.3 The Thermodynamic Origin of Equilibrium Constants 11.4 The Extent of Reaction 11.5 The Direction of Reaction Equilibrium Calculations 11.6 The Equilibrium Constant in Terms of Molar Concentrations of Gases 11.7 Alternative Forms of the Equilibrium Constant 11.8 Using Equilibrium Constants TOOLBOX 11.1 • How to Set Up and Use an Equilibrium Table The Response of Equilibria to Changes in Conditions 11.9 Adding and Removing Reagents 11.10 Compressing a Reaction Mixture 11.11 Temperature and Equilibrium Impact on Materials and Biology 11.12 Catalysts and Haber’s Achievement 11.13 Homeostasis Exercises Chapter 12 ACIDS AND BASES The Nature of Acids and Bases 12.1 Brønsted–Lowry Acids and Bases 12.2 Lewis Acids and Bases 12.3 Acidic, Basic, and Amphoteric Oxides 12.4 Proton Exchange Between Water Molecules 12.5 The pH Scale 12.6 The pOH of Solutions Weak Acids and Bases 12.7 Acidity and Basicity Constants 12.8 The Conjugate Seesaw 12.9 Molecular Structure and Acid Strength 12.10 The Strengths of Oxoacids and Carboxylic Acids The pH of Solutions of Weak Acids and Bases 12.11 Solutions of Weak Acids TOOLBOX 12.1 • How to Calculate the pH of a Solution of a Weak Acid 12.12 Solutions of Weak Bases TOOLBOX 12.2 • How to Calculate the pH of a Solution of a Weak Base 12.13 The pH of Salt Solutions Polyprotic Acids and Bases 12.14 The pH of a Polyprotic Acid Solution 12.15 Solutions of Salts of Polyprotic Acids 12.16 The Concentrations of Solute Species TOOLBOX 12.3 • How to Calculate the Concentrations of all Species in a Polyprotic Acid Solution 12.17 Composition and pH BOX 12.1 • What Has This To Do With . . .The Environment? Acid Rain and the Gene Pool Autoprotolysis and pH 12.18 Very Dilute Solutions of Strong Acids and Bases 12.19 Very Dilute Solutions of Weak Acids Exercises Chapter 13 AQUEOUS EQUILIBRIA Mixed Solutions and Buffers 13.1 Buffer Action 13.2 Designing a Buffer 13.3 Buffer Capacity BOX 13.1 • What Has This To Do With . . . Staying Alive? Physiological Buffers Titrations 13.4 Strong Acid–Strong Base Titrations TOOLBOX 13.1 • How to Calculate the pH During a Strong Acid–Strong Base Titration 13.5 Strong Acid–Weak Base and Weak Acid–Strong Base Titrations TOOLBOX 13.2 • How to Calculate the pH During a Titration of a Weak Acid or a Weak Base 13.6 Acid–Base Indicators 13.7 Stoichiometry of Polyprotic Acid Titrations Solubility Equilibria 13.8 The Solubility Product 13.9 The Common-Ion Effect 13.10 Predicting Precipitation 13.11 Selective Precipitation 13.12 Dissolving Precipitates 13.13 Complex Ion Formation 13.14 Qualitative Analysis Exercises Chapter 14 ELECTROCHEMISTRY Representing Redox Reactions 14.1 Half-Reactions 14.2 Balancing Redox Equations TOOLBOX 14.1 • How to Balance Complicated Redox Equations Galvanic Cells 14.3 The Structure of Galvanic Cells 14.4 Cell Potential and Reaction Gibbs Free Energy 14.5 The Notation for Cells TOOLBOX 14.2 • How to Write a Cell Reaction Corresponding to a Cell Diagram 14.6 Standard Potentials 14.7 The Electrochemical Series 14.8 Standard Potentials and Equilibrium Constants TOOLBOX 14.3 • How to Calculate Equilibrium Constants from Electrochemical Data 14.9 The Nernst Equation 14.10 Ion-Selective Electrodes Electrolytic Cells 14.11 Electrolysis 14.12 The Products of Electrolys TOOLBOX 14.4 • How to Predict the Result of Electrolysis The Impact on Materials 14.13 Applications of Electrolysis 14.14 Corrosion 14.15 Practical Cells BOX 14.1 • Frontiers of Chemistry: Fuel Cells Exercises Chapter 15 CHEMICAL KINETICS Reaction Rates 15.1 Concentration and Reaction Rate BOX 15.1 • How Do We Know . . . What Happens to Atoms During a Reaction? 15.2 The Instantaneous Rate of Reaction 15.3 Rate Laws and Reaction Order Concentration and Time 15.4 First-Order Integrated Rate Laws 15.5 Half-Lives for First-Order Reactions 15.6 Second-Order Integrated Rate Laws Reaction Mechanisms 15.7 Elementary Reactions 15.8 The Rate Laws of Elementary Reactions 15.9 Chain Reactions 15.10 Rates and Equilibrium Models of Reactions 15.11 The Effect of Temperature 15.12 Collision Theory BOX 15.2 • How Do We Know . . . What Happens During a Molecular Collision? 15.13 Transition State Theory Impact on Materials and Biology: Accelerating Reactions 15.14 Catalysis BOX 15.3 • What Has This To Do With . . . The Environment? Protecting the Ozone Layer 15.15 Industrial Catalysts 15.16 Living Catalysts: Enzymes Exercises MAJOR TECHNIQUE 5 • Computation Chapter 16 THE ELEMENTS: THE MAIN-GROUP ELEMENTS Periodic Trends 16.1 Atomic Properties 16.2 Bonding Trends Hydrogen 16.3 The Element 16.4 Compounds of Hydrogen BOX 16.1 • What Has This To Do With . . .The Environment? The Greenhouse Effect Group 1: The Alkali Metals 16.5 The Group 1 Elements 16.6 Compounds of Lithium, Sodium, and Potassium Group 2: The Alkaline Earth Metals 16.7 The Group 2 Elements 16.8 Compounds of Beryllium, Magnesium, and Calcium Group 13: The Boron Family 16.9 The Group 13 Elements 16.10 Group 13 Oxides and Halides 16.11 Boranes and Borohydrides Group 14: The Carbon Family 16.12 The Group 14 Elements BOX 16.2 • Frontiers of Chemistry: Self-Assembling Materials 16.13 Oxides of Carbon and Silicon 16.14 Other Important Group 14 Compounds Group 15: The Nitrogen Family 16.15 The Group 15 Elements 16.16 Compounds with Hydrogen and the Halogens 16.17 Nitrogen Oxides and Oxoacids 16.18 Phosphorus Oxides and Oxoacids Group 16: The Oxygen Family 16.19 The Group 16 Elements 16.20 Compounds with Hydrogen 16.21 Sulfur Oxides and Oxoacids Group 17: The Halogens 16.22 The Group 17 Elements 16.23 Compounds of the Halogens Group 18: The Noble Gases 16.24 The Group 18 Elements 16.25 Compounds of the Noble Gases Exercises Chapter 17 THE ELEMENTS: THE d-BLOCK The d-Block Elements and Their Compounds 17.1 Trends in Physical Properties 17.2 Trends in Chemical Properties Selected Elements: A Survey 17.3 Scandium Through Nickel 17.4 Groups 11 and 12 Coordination Compounds 17.5 Coordination Complexes BOX 17.1 • What Has This To Do With . . . Staying Alive? Why We Need to Eat d-Metals TOOLBOX 17.1 • How to Name d-Metal Complexes and Coordination Compounds 17.6 The Shapes of Complexes 17.7 Isomers BOX 17.2 • How Do We Know . . . That a Complex is Optically Active? The Electronic Structures of Complexes 17.8 Crystal Field Theory 17.9 The Spectrochemical Series 17.10 The Colors of Complexes 17.11 Magnetic Properties of Complexes 17.12 Ligand Field Theory Exercises Chapter 18 NUCLEAR CHEMISTRY Nuclear Decay 18.1 The Evidence for Spontaneous Nuclear Decay 18.2 Nuclear Reactions 18.3 The Pattern of Nuclear Stability 18.4 Predicting the Type of Nuclear Decay 18.5 Nucleosynthesis BOX 18.1 • What Has This To Do With . . . Staying Alive? Nuclear Medicine Nuclear Radiation 18.6 The Biological Effects of Radiation 18.7 Measuring the Rate of Nuclear Decay BOX 18.2 • How Do We Know . . . How Radioactive a Material Is? 18.8 Uses of Radioisotopes Nuclear Energy 18.9 Mass–Energy Conversion 18.10 Nuclear Fission 18.11 Nuclear Fusion 18.12 The Chemistry of Nuclear Power Exercises Chapter 19 ORGANIC CHEMISTRY I: THE HYDROCARBONS Aliphatic Hydrocarbons 19.1 Types of Aliphatic Hydrocarbons TOOLBOX 19.1 • How to Name Aliphatic Hydrocarbons 19.2 Isomers 19.3 Properties of Alkanes 19.4 Alkane Substitution Reactions 19.5 Properties of Alkenes 19.6 Electrophilic Addition Aromatic Compounds 19.7 Nomenclature of Arenes 19.8 Electrophilic Substitution Impact on Technology: Fuels 19.9 Gasoline 19.10 Coal Exercises MAJOR TECHNIQUE 6 • Mass Spectrometry Exercises Chapter 20 ORGANIC CHEMISTRY II: POLYMERS AND BIOLOGICAL COMPOUNDS Common Functional Groups 20.1 Haloalkanes 20.2 Alcohols 20.3 Ethers 20.4 Phenols 20.5 Aldehydes and Ketones 20.6 Carboxylic Acids 20.7 Esters 20.8 Amines, Amino Acids, and Amides TOOLBOX 20.1 • How to Name Simple Compounds with Functional Groups Impact on Technology 20.9 Addition Polymerization 20.10 Condensation Polymerization 20.11 Copolymers 20.12 Physical Properties of Polymers Impact on Biology 20.13 Proteins BOX 20.1 • Frontiers of Chemistry: Conducting Polymers 20.14 Carbohydrates 20.15 Nucleic Acids Exercises MAJOR TECHNIQUE 7 • Nuclear Magnetic Resonance Exercises APPENDIX 1: Symbols, Units, and Mathematical Techniques 1A Symbols 1B Units and Unit Conversions 1C Scientific Notation 1D Exponents and Logarithms 1E Equations and Graphs 1F Calculus APPENDIX 2: Experimental Data 2A Thermodynamics Data at 25 °C 2B Standard Potentials at 25 °C 2C Ground-State Electron Confi gurations 2D The Elements 2E Industrial Chemical Production of Selected Organic and Inorganic Commodities APPENDIX 3: Nomenclature 3A The Nomenclature of Polyatomic Ions 3B Common Names of Chemicals 3C Traditional Names of Some Common Cations with Variable Charge Numbers GLOSSARY A B C D E F G H I J-K L M N O P Q R S T U V W-X-Y-Z ANSWERS Self-Tests B Fundamentals Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Major Technique 3 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Major Technique 4 Chapter 11 Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Chapter 17 Chapter 18 Chapter 19 Chapter 20 Odd-Numbered Exercises Fundamentals Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Chapter 17 Chapter 18 Chapter 19 Chapter 20 Major Techniques Illustration Credits INDEX A B C D E F G H-I J-K L-M N O-P Q R S T U V W-X-Y-Z Periodic Table of the Elements Frequently Used Tables and Figures Key Equations The Elements SI Prefixes Fundamental Constants Relations Between Units

توضیحاتی در مورد کتاب به زبان اصلی :


Written for calculus-inclusive general chemistry courses, Chemical Principles helps students develop chemical insight by showing the connections between fundamental chemical ideas and their applications. Unlike other texts, it begins with a detailed picture of the atom then builds toward chemistry’s frontier, continually demonstrating how to solve problems, think about nature and matter, and visualize chemical concepts as working chemists do. Flexibility in level is crucial, and is largely established through clearly labeling (separating in boxes) the calculus coverage in the text: Instructors have the option of whether to incorporate calculus in the coverage of topics. The multimedia integration of Chemical Principles is more deeply established than any other text for this course. Through the unique eBook, the comprehensive ChemPortal, Living Graph icons that connect the text to the Web, and a complete set of animations, students can take full advantage of the wealth of resources available to them to help them learn and gain a deeper understanding.



پست ها تصادفی