توضیحاتی در مورد کتاب Chemical Reaction Engineering
نام کتاب : Chemical Reaction Engineering
ویرایش : 2 ed.
عنوان ترجمه شده به فارسی : مهندسی واکنش شیمیایی
سری :
نویسندگان : Martin Schmal (editor), José Carlos Pinto (editor)
ناشر : CRC Press
سال نشر : 2021
تعداد صفحات : 752
[772]
ISBN (شابک) : 0367494469 , 9780367494469
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 14 Mb
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover
Title Page
Copyright Page
Table of contents
Preface
Nomenclature
About the authors
Part I. Basic notions
1 Definitions and stoichiometry
1.1 Measurement variables
1.2 Calculation of measurement variables
1.2.1 Extent of the reaction
1.2.2 Conversion
1.3 Continuous systems
1.4 Partial pressures
1.5 Method of total pressure
1.6 General properties
1.7 Solved problems
1.8 Accuracy and precision
1.9 Measurement errors and precision
2 Chemical equilibrium
3 Kinetics of reactions
3.1 Reaction rates—definitions
3.2 Reaction rate
3.2.1 Kinetic equations
3.3 Influence of the temperature on the reaction rate
3.3.1 Reversible reactions
3.3.2 Interpretation remarks
3.3.3 Reparameterization of the Arrhenius equation
4 Molar balance in open and closed systems with chemical reaction
4.1 Batch
4.2 Continuous stirring tank reactor
4.3 Continuous tubular reactor
Part II. Kinetics
5 Determination of kinetic parameters
5.1 Irreversible reaction at constant volume
5.1.1 Kinetic model of first order
5.1.2 Kinetic model of second order (global)
5.2 Irreversible reactions at variable volume
5.2.1 Irreversible of first order
5.2.2 Irreversible reactions of second order
5.3 Irreversible reactions of order n–Half-life method
5.4 Reversible reactions at constant volume
5.4.1 Direct and reverse first-order elementary reaction
5.4.2 Direct and reverse second-order elementary reaction
5.5 Determination of the kinetic parameters by the differential method
5.5.1 Differential reactor
5.6 Uncertainties of kinetic parameters
5.7 Reparameterization of power-law rate equations
6 Kinetics of multiple reactions
6.1 Simple reactions in series
6.2 Simple parallel reactions
6.3 Continuous systems
6.4 Kinetics of complex reactions
6.4.1 Decomposition reactions
6.4.2 Parallel reactions
6.4.3 Series–parallel reactions
7 Non-elementary reactions
7.1 Classical kinetic model
7.2 Chain reactions
7.3 Theory of the transition state
7.4 Reactions of thermal cracking
8 Polymerization reactions
8.1 Fundamental aspects of step polymerizations
8.1.1 The most probable Schulz-Flory distribution
8.2 Fundamental aspects of chain polymerizations
8.2.1 Initiation
8.2.2 Propagation
8.2.3 Termination
8.2.4 Chain transfer
8.2.5 Quasi-steady state balances
8.3 Diffusive limitations
8.4 Depolymerization
8.5 Concluding remarks
9 Kinetics of liquid-phase reactions
9.1 Enzymatic reactions
9.1.1 Kinetic model
9.1.2 Determination of the kinetic parameters
9.1.3 Effect of external inhibitors
9.1.4 Kinetics of biological fermentation
9.1.5 Mass balance
9.2 Liquid-phase reactions
9.2.1 Liquid solutions
9.2.2 Acid—base reactions
9.3 Reparameterization of the Michaelis-Menten equation
10 Heterogeneous reaction kinetics
10.1 External phenomena
10.2 Internal diffusion phenomena
10.3 Adsorption–desorption phenomena
10.3.1 Physical adsorption or physisorption
10.3.2 Chemical adsorption or chemisorption
10.3.3 Comparing physical and chemical adsorptions
10.4 Adsorption isotherms
10.5 Adsorption models
10.5.1 Langmuir model
10.5.2 Other chemisorption models
10.6 Model of heterogeneous reactions
10.6.1 Langmuir–Hinshelwood–Hougen–Watson-model (LHHW)
10.6.2 Eley–Rideal model
10.6.3 Effect of the temperature and energies
10.7 Determination of the constants
10.8 Noncatalytic heterogeneous reactions
10.9 Reparameterization of the LHHW equation
Part III. Parameter estimation and experimental design
11 Determination of kinetic parameters through parameter estimation
11.1 Definition of the parameter estimation problem
11.2 The objective function
11.3 Error propagation and parameterization of the estimation problem
11.4 Numerical minimization of the objective function
11.5 Statistical characterization of model adequacy
11.6 The confidence region of parameter estimates
11.7 Uncertainties of model predictions
11.8 Parameterization of the arrhenius equation
11.9 Concluding remarks
12 Experimental design
12.1 Factorial experimental design
12.2 Optimal experimental design for parameter estimation
12.3 Sequential experimental designs
12.3.1 Sequential experimental design for model discrimination
12.3.2 Sequential experimental design for parameter estimation
12.4 Concluding remarks
13 Kinetic exercises
13.1 Solution of kinetic exercises
13.2 Proposed exercises
Part IV. Reactors
14 Ideal reactors
14.1 Types of reactors
14.2 Definitions and concepts of residence time
14.3 Ideal reactors
14.3.1 Batch reactor
14.3.2 Continuous tank reactor
14.3.3 Continuous tubular reactor (PFR)
14.4 Ideal nonisothermal reactors
14.4.1 Adiabatic continuous reactor
14.4.2 Nonadiabatic batch reactor
14.4.3 Adiabatic batch reactor
14.4.4 Analysis of the thermal effects
15 Specific reactors
15.1 Semibatch reactor
15.2 Reactor with recycle
15.3 Pseudo-homogeneous fixed-bed reactor
15.4 Membrane reactors
16 Comparison of reactors
16.1 Comparison of volumes
16.1.1 Irreversible first-order reaction at constant volume
16.1.2 Irreversible second-order reaction at constant volume
16.1.3 Reactions at variable volume
16.2 Productivity
16.3 Yield/Selectivity
16.4 Overall yield
16.4.1 Effect of reaction order
16.4.2 Effects of kinetic constants
16.4.3 Presence of two reactants
16.5 Reactions in series
17 Combination of reactors
17.1 Reactors in series
17.1.1 Calculating the number of reactors in series to an irreversible first-order reaction
17.1.2 Calculating the number of reactors in series for an irreversible second-order reaction
17.1.3 Graphical solution
17.2 Reactors in parallel
17.3 Production rate in reactors in series
17.4 YIELD and selectivity in reactors in series
18 Transport phenomena in heterogeneous systems
18.1 Intraparticle diffusion limitation—pores
18.2 Effectiveness factor
18.3 Effects of intraparticle diffusion on the experimental parameters
18.4 External mass transfer and intraparticle diffusion limitations
Part V. Deactivation
19 Catalyst deactivation
19.1 Kinetics of deactivation
19.2 Deactivation in pfr or cstr reactor
19.3 Forced deactivation
19.4 Catalyst regeneration
19.4.1 Differential scanning calorimetry
19.4.2 Temperature programmed oxidation
19.4.3 Catalytic evaluation
19.5 Kinetic study of regeneration
19.5.1 Balance with respect to solid (carbon)
19.5.2 Particular case
20 Exercises reactors and heterogeneous reactors
20.1 Solutions to exercises: Reactors
20.2 Exercises proposed: Reactors
21 Multiphase reacting systems
22 Heterogeneous reactors
22.1 Fixed bed reactor
22.1.1 Reactors in series
22.2 Fluidized bed reactor
23 Nonideal reactors
23.1 Introduction
23.2 Residence time distribution
23.2.1 Ideal cases
23.2.2 Variance
23.3 Nonideal compartmental reactor models
Part VI. Catalysis
24 Catalysis: Analyzing variables influencing the catalytic properties
24.1 Introduction
24.2 Selection of catalysts
24.3 Activity patterns
24.3.1 Model reactions
24.3.2 Cyclohexane dehydrogenation
24.3.3 Benzene hydrogenation
24.4 Conventional preparation methods of catalysts
24.4.1 Precipitation/coprecipitation methods
24.4.2 Impregnation of metals on supports
24.4.3 Ion exchange
24.5 Analyses of variables influencing final properties of catalysts
24.5.1 Influence of pH
24.5.2 Autoclaving
24.5.3 Influence of time, concentration, and impregnation cycles
24.6 Thermal treatments
24.6.1 Drying
24.6.2 Calcination
24.7 Effect of reduction temperature on interaction and sintering
24.8 Influence of the support and metal concentration over the reduc-tion
24.9 Influence of the heating rate
24.10 Influence of vapor
24.11 Effect of temperature and reaction time
24.12 Strong metal support interaction
24.13 Experimental design—influence of parameters on the catalytic performance
24.14 Conclusion
Part VII. Practices
25 Experimental practices
25.1 Reactions in homogeneous phase
25.1.1 Free radical polymerization of styrene
25.1.2 Polymerization of isobutylene
25.2 Reactions in heterogeneous phase
25.2.1 Experimental system
25.2.2 Determination of activation energy: dehydrogenation of cyclohexane
25.2.3 Kinetic study—methane reforming withCO2—heterogeneous reaction
25.3 Performance of reactors
25.3.1 Batch reactor–hydrogenation of sucrose
25.3.2 Integral continuous flow reactor (tubular)—isomerization of xylenes
25.3.3 Goals
References
Subject index