توضیحاتی در مورد کتاب Chemical Reactor Design Mathematical Modeling and Applications
نام کتاب : Chemical Reactor Design Mathematical Modeling and Applications
ویرایش : 1. Auflage
عنوان ترجمه شده به فارسی : مدلسازی و کاربردهای ریاضی طراحی راکتور شیمیایی
سری :
نویسندگان : Conesa, Juan A
ناشر : Weinheim Wiley-VCH Verlag GmbH & Co. KGaA
سال نشر : 2019
تعداد صفحات : 353
ISBN (شابک) : 9783527346301 , 9783527823376
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 9 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover......Page 1
Title Page......Page 5
Copyright......Page 6
Contents......Page 9
Preface......Page 15
Nomenclature......Page 17
Part I Reactor Analysis, Design, and Scale‐up......Page 21
1.2 Residence Time Distribution (RTD) Function......Page 23
1.2.1.1 Pulse Input......Page 24
1.2.1.2 Step Input......Page 26
1.2.2 RTD Concept in Heterogeneous Systems......Page 27
1.2.3 Characteristics of RTD......Page 28
1.2.3.1 Mean Residence Time......Page 29
1.2.3.2 Second and Third Moments of the RTD......Page 30
1.3.1 RTD of the Batch and PFR Reactors......Page 31
1.3.2 RTD of an ideal CSTR......Page 32
1.3.3 RTD of PFR/CSTR in Series......Page 33
1.4.1.1 Tanks‐in‐series Model......Page 35
1.4.1.2 The Dispersion Model......Page 38
1.4.2.1 Two CSTR with Exchange of Matter......Page 42
1.4.2.2 CSTR with Dead Volume and Short Circuit......Page 43
1.5 Other Models of Real Reactors Using CSTR and PFR......Page 45
Bibliography......Page 52
2.2 Convolution......Page 55
2.2.1 Convolution Properties......Page 57
2.2.3 Calculating Convolution Functions......Page 58
2.3 Deconvolution......Page 61
2.4 Computer Program Using Matlab® (Convolution)......Page 64
2.5 Computer Program Using MATLAB (Deconvolution)......Page 67
2.6 Convolution of Signals in Reactors Connected in Series......Page 70
Bibliography......Page 75
3.2 Definition and Properties of the Transfer Function......Page 77
3.3.1 Laplace Transform of Some Important Functions for Reactor Characterization......Page 78
3.3.1.1 Ramp Function......Page 79
3.3.1.3 Pulse Function......Page 80
3.3.1.4 Other Functions......Page 81
3.4.1 Study of the RTD in the CSTR......Page 82
3.4.2 Study of the RTD in the PFR......Page 85
3.5 Complex Network of Ideal Reactors......Page 86
3.5.1 Systems in Series......Page 87
3.5.2 Systems in Parallel......Page 89
3.5.3 Systems with Recycle......Page 91
3.6 Transfer Function for the Dispersion Model......Page 101
Bibliography......Page 105
4.2 Classification of Partial Differential Equations......Page 107
4.3.1 First‐order Approximation......Page 108
4.3.2 Approximation of Second Order......Page 109
4.4 Approaching the Problem Using Finite Differences......Page 111
4.4.1 Explicit Method......Page 113
4.4.2 Initial and Boundary Conditions......Page 114
4.4.3 Stability......Page 116
4.4.3.1 Resolution of the Selected Problem and Programming......Page 117
4.5.1 The RTD of a Complex System......Page 118
4.5.1.1 Boundary Conditions for Partial Differential Equations......Page 121
4.5.2 Concentration Profile in a Reactor in Which There Is Flow and Dispersion......Page 124
4.5.3 Reaction on a Catalytic Flat Wall......Page 126
Bibliography......Page 130
5.2 CSTR Working in Unsteady State......Page 131
5.3 PFR Working in Dynamic Regime (No Dispersion)......Page 133
5.4 PFR Working in Dynamic Regime (with Dispersion)......Page 135
5.5 Multiple Steady States in CSTR with Exothermal Reaction......Page 138
Bibliography......Page 145
6.1 Introduction......Page 147
6.2.1 Temperature Control. Heat Transmission......Page 149
6.2.2 Example of Scaling a Batch and Semi‐batch Reactor......Page 150
6.3 Rapid Exothermic Reaction in a Tubular Reactor......Page 156
6.3.1 Study of the Stability of the Process......Page 159
Bibliography......Page 175
7.1 Introduction......Page 177
7.2 Objectives and Types of FUSO......Page 178
7.3 Periodic Variation of the Input......Page 179
7.3.1 Modes of Operation......Page 180
7.3.2.3 Choice of Mode......Page 182
7.3.3 Periodic Variation of Concentration......Page 183
7.3.4 Periodic Variation of the Flow......Page 184
7.4 Periodic Flow Reversal......Page 185
7.4.1 Operation Design......Page 187
7.5 Operation with Variable Volume (VVO)......Page 188
7.6 Oscillating Pressure......Page 189
Bibliography......Page 190
Part II Catalytic, Multiphase and Biochemical Reactor Design......Page 193
8.1.1 Reactors for Solid‐Catalyzed Reactions......Page 195
8.1.2 Solid Catalysts (Supports)......Page 198
8.1.2.2 Comparison and Uses of Supports......Page 200
8.1.2.4 Zeolites......Page 201
8.2 Industrial Preparation of Catalysts......Page 203
8.2.1.1 Synthesis of Zeolites......Page 204
8.2.1.3 Impregnation with Active Metals......Page 205
8.2.2 Key Definitions in Catalysts Performance......Page 206
8.3 Main Catalytic Processes in Industry......Page 208
8.3.1 Acid Catalysis......Page 210
8.3.1.1 Fluid Catalytic Cracking......Page 211
8.3.1.2 Ethylbenzene Production......Page 213
8.3.2.1 Ethylene Oxide Production from Ethylene......Page 214
8.3.3 Reduction Catalysis......Page 216
8.3.3.1 Steam Reforming of Alcohols......Page 217
8.3.3.3 Methanation: CO/H2 to Methane......Page 219
8.3.4 Environmental Catalysis......Page 220
8.3.4.1 Catalytic Reactions for the Removal of Pollutants in the Exhaust Gases......Page 221
8.3.4.3 Three‐Way Catalyst......Page 222
8.3.4.4 SCR Catalyst......Page 223
8.3.4.6 Diesel Particulate Filter (DPF) Catalyst......Page 224
Bibliography......Page 225
9.1 Introduction......Page 227
9.2 Rate Equation in Catalytic Systems......Page 228
9.2.1 Steps in the Catalytic Reaction......Page 234
9.3.1 Mechanisms of Catalysis......Page 235
9.3.2 Theories About Adsorption......Page 237
9.4 Rate Expression for External Diffusion as a Limiting Step......Page 239
9.5 Reaction Rate When Internal Diffusion Is Slow......Page 241
9.5.1 First‐order Kinetics in Flat Particles......Page 242
9.5.2 First‐order Kinetics in Other Geometries......Page 245
9.5.3 Limits of Thiele Modulus and Weisz Modulus......Page 249
9.6 Combination of Resistances......Page 256
9.7 Monolithic Catalytic Reactors......Page 257
9.8.1 Transfer Models......Page 265
9.8.2.1 Case A: Instantaneous Reaction......Page 267
9.8.2.2 Analysis of the Controlling Steps: The Hatta Modulus......Page 270
9.8.2.3 Other Cases in Fluid–Fluid Reactions: The General Rate Equation......Page 271
9.8.3 Gas–Liquid Reactions in Solid Catalysts. General Equation......Page 276
9.8.3.1 Estimation of the Controlling Resistance in Multiphase Systems......Page 278
9.8.3.2 General n-th Order Kinetics......Page 280
9.9.1 Types of Flow in Multiphase Reactors......Page 281
9.9.2 Design Models for Flow in Multiphase Reactors......Page 282
9.9.3.1 Situation 1: Gas and Liquid Phases in Plug Flow......Page 283
9.9.3.3 Situation 3: Gas Phase in Plug Flow. Liquid Phase Completely Mixed......Page 284
9.9.4.1 Situation 1: Gas and Liquid Phases in Plug Flow......Page 285
9.9.4.2 Situation 2. Gas and Liquid as Mixed Flow......Page 288
9.9.5 Case 3. Multiphase Reactors......Page 289
Bibliography......Page 307
10.1 Introduction......Page 309
10.2.1 Characteristics of Enzymatic Catalysis. The Active Center......Page 310
10.2.2.1 Kinetics of Reactions with a Single Substrate. Michaelis–Menten Equation......Page 312
10.2.2.2 Meaning of the Parameters of the Michaelis Equation......Page 313
10.2.3 Enzymatic Reactions with Inhibition......Page 315
10.2.4.1 Case 1. Enzymatic Reactions with Two Substrates by Formation of a Ternary Complex......Page 316
10.2.4.2 Case 2. Enzymatic Reactions with Two Substrates Without Formation of a Complex......Page 320
10.2.4.3 Strategies to Distinguish the Previous Cases......Page 321
10.3.2 Stoichiometry of Product Formation......Page 324
10.3.3 Cell Growth, Substrate Consumption, and Product Formation......Page 325
10.3.3.1 Kinetics of Growth......Page 326
10.3.3.2 Kinetics of Maintenance......Page 327
10.4 Immobilization of Enzymes and Cells: Mass Transfer Effects......Page 330
10.4.1 Effect of Limitation by Internal Diffusion......Page 333
10.5 Bioreactors......Page 334
10.5.1 Continuous Stirred Tank Bioreactor (CSTB)......Page 336
10.5.1.1 Influence of the Dilution Rate. Calculation of the Bioreactor Wash......Page 337
10.5.2 Tubular Fermenters with Flocs......Page 339
10.5.3 Fed‐batch Bioreactor......Page 340
Bibliography......Page 345
Index......Page 347
EULA......Page 353