توضیحاتی در مورد کتاب Collaborative Perception, Localization and Mapping for Autonomous Systems
نام کتاب : Collaborative Perception, Localization and Mapping for Autonomous Systems
ویرایش : 1
عنوان ترجمه شده به فارسی : درک مشترک، محلی سازی و نقشه برداری برای سیستم های خودمختار
سری : Springer Tracts in Autonomous Systems
نویسندگان : Yufeng Yue, Danwei Wang
ناشر : Springer
سال نشر : 2020
تعداد صفحات : 149
ISBN (شابک) : 9789811588594 , 9789811588600
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 8 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
این کتاب با پیشنهاد یک چارچوب جدید از ادراک چندوجهی-محلی سازی نسبی-نقشه برداری مشارکتی برای سیستم های ربات مشارکتی، پیشرفت و پیشرفت پیشرفته را برای درک و نقشه برداری مشترک ارائه می دهد. سازماندهی کتاب به خوانندگان اجازه می دهد تا فناوری ادراک مشترک را برای ربات های مستقل تجزیه و تحلیل، مدل سازی و طراحی کنند. این پایه اساسی در زمینه سیستم های ربات مشارکتی و تئوری اساسی و دستورالعمل های فنی برای درک و نقشه برداری مشارکتی را ارائه می دهد. این کتاب با ارائه شبیهسازیهای گسترده و نتایج آزمایشهای واقعی در فصلهای مختلف، به طور قابلتوجهی توسعه سیستمهای خودمختار را از هوش فردی به هوش مشارکتی ارتقا میدهد. این کتاب به مهندسان، دانشجویان فارغ التحصیل و محققان در زمینه های سیستم های خودمختار، روباتیک، بینایی کامپیوتر و ادراک مشارکتی پاسخ می دهد.
فهرست مطالب :
Preface
Contents
1 Introduction
1.1 Background
1.1.1 Motivations
1.1.2 Challenges
1.2 Objective of This Book
1.3 Preview of Chapters
References
2 Technical Background
2.1 Collaborative Perception and SLAM
2.1.1 Single Robot Perception and SLAM
2.1.2 Multi-Robot SLAM
2.1.3 Multi-Robot Map Fusion
2.2 Data Registration and Matching
2.2.1 Registration of Sensor Data
2.2.2 Homogeneous Map Matching
2.2.3 Heterogeneous Map Matching
2.3 Collaborative Information Fusion
2.3.1 Map Inconsistency Detection
2.3.2 Probabilistic Information Integration
References
3 Point Registration Approach for Map Fusion
3.1 Introduction
3.2 OICP Algorithm
3.2.1 Uncertainty in Occupancy Probability
3.2.2 Uncertainty in Positional Value
3.3 Transformation Evaluation and Probability Fusion
3.3.1 Transformation Evaluation
3.3.2 Relative Entropy Filter
3.4 Experimental Results
3.4.1 Registration Results
3.4.2 Transformation Evaluation
3.4.3 Probabilistic Map Fusion
3.5 Conclusions
References
4 Hierarchical Map Fusion Framework with Homogeneous Sensors
4.1 Introduction
4.2 System Overview
4.3 Map Uncertainty Modeling
4.3.1 Individual Voxel Uncertainty
4.3.2 Structural Edge Uncertainty
4.3.3 Local Uncertainty Propagation
4.4 Two-Level Probabilistic Map Matching
4.4.1 The Formulation of Two-Level Probabilistic Map Matching Problem
4.4.2 Probabilistic Data Association
4.4.3 Error Metric Optimization
4.5 Transformation Evaluation and Probability Merging
4.5.1 Transformation Evaluation
4.5.2 Relative Entropy Filter
4.6 Experimental Results
4.6.1 Evaluation Protocol
4.6.2 Edge Matching Analysis
4.6.3 Full Map Matching Analysis
4.6.4 Statistical Testing and Map Merging
4.7 Conclusions
References
5 Collaborative 3D Mapping Using Heterogeneous Sensors
5.1 Introduction
5.2 Distributed Multi-Robot Map Fusion
5.2.1 System Architecture
5.2.2 System Framework Definition and Formulation
5.2.3 Map Fusion Definition and Formulation
5.3 Multi-Robot Map Matching
5.3.1 Mathematic Formulation
5.3.2 3D Occupancy Map Matching
5.3.3 E-Step
5.3.4 M-Step
5.4 Time-Sequential Map Merging
5.4.1 Uncertainty Propagation and Transformation
5.4.2 Uncertainty Merge
5.5 Experimental Results
5.5.1 Evaluation Protocol
5.5.2 Indoor Environment
5.5.3 Mixed Environment Ground Floor
5.5.4 Changi Exhibition Center
5.5.5 Unstructured Environment Environment
5.5.6 Analysis of Experiment Results
5.6 Conclusions
References
6 All-Weather Collaborative Mapping with Dynamic Objects
6.1 Introduction
6.2 Framework of Collaborative Dynamic Mapping
6.3 Multimodal Environmental Perception
6.3.1 Heterogeneous Sensors Calibration
6.3.2 Separation of Static and Dynamic Observations
6.4 Distributed Collaborative Dynamic Mapping
6.4.1 Single Robot Level Definition
6.4.2 Collaborative Robots Level Definition
6.5 Experiments
6.5.1 Experiments Overview
6.5.2 Daytime Unstructured Environment
6.5.3 Night-Time Unstructured Environment
6.5.4 Quantitative Analysis
6.6 Conclusions
References
7 Collaborative Probabilistic Semantic Mapping Using CNN
7.1 Introduction
7.2 System Framework
7.2.1 The Framework of Hierarchical Semantic 3D Mapping
7.2.2 Centralized Problem Formulation
7.2.3 Distributed Hierarchical Definition
7.3 Collaborative Semantic 3D Mapping
7.3.1 Multimodal Semantic Information Fusion
7.3.2 Single Robot Semantic Mapping
7.3.3 Collaborative Semantic Map Fusion
7.4 Experimental Results
7.4.1 Evaluation Overview
7.4.2 Open Carpark
7.4.3 Mixed Indoor Outdoor
7.4.4 UAV-UGV Mapping
7.4.5 Quantitative Analysis
7.5 Conclusion
References
8 Conclusions
8.1 Summary
8.2 Open Challenges
توضیحاتی در مورد کتاب به زبان اصلی :
This book presents the breakthrough and cutting-edge progress for collaborative perception and mapping by proposing a novel framework of multimodal perception-relative localization–collaborative mapping for collaborative robot systems. The organization of the book allows the readers to analyze, model and design collaborative perception technology for autonomous robots. It presents the basic foundation in the field of collaborative robot systems and the fundamental theory and technical guidelines for collaborative perception and mapping. The book significantly promotes the development of autonomous systems from individual intelligence to collaborative intelligence by providing extensive simulations and real experiments results in the different chapters. This book caters to engineers, graduate students and researchers in the fields of autonomous systems, robotics, computer vision and collaborative perception.