توضیحاتی در مورد کتاب Complex Analytic Cycles I: Basic Results on Complex Geometry and Foundations for the Study of Cycles (Grundlehren der mathematischen Wissenschaften)
نام کتاب : Complex Analytic Cycles I: Basic Results on Complex Geometry and Foundations for the Study of Cycles (Grundlehren der mathematischen Wissenschaften)
ویرایش : 1st ed. 2019
عنوان ترجمه شده به فارسی : چرخه های تحلیلی پیچیده I: نتایج اساسی در مورد هندسه پیچیده و مبانی مطالعه چرخه ها (Grundlehren der mathematischen Wissenschaften)
سری : Grundlehren der mathematischen Wissenschaften (Book 356)
نویسندگان : Daniel Barlet, Jón Magnússon
ناشر : Springer
سال نشر : 2020
تعداد صفحات : 545
ISBN (شابک) : 3030311627 , 9783030311629
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 3 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
این کتاب شامل ارائهای از ابتدا از روش شناسی فضای چرخه در هندسه پیچیده است. برنامه های کاربردی در زمینه های مختلف داده شده است. بخش قابل توجهی از کتاب به مطالبی اختصاص دارد که در حوزه کلی تحلیل پیچیده مهم هستند. در این راستا، از رویکرد هندسی برای به دست آوردن نتایج اساسی مانند قضیه پارامترسازی محلی، قضیه للونگ و قضیه تصویر مستقیم رمرت استفاده میشود. روشهای مربوط به فضاهای چرخه برای حدود چهل سال در هندسه پیچیده مورد استفاده قرار گرفتهاند. هدف این کتاب توضیح سیستماتیک این روش ها به گونه ای است که برای دانشجویان تحصیلات تکمیلی ریاضیات و همچنین ریاضیدانان محقق قابل دسترسی باشد. پس از مطالب پیشزمینه که در فصلهای اولیه ارائه شده است، در آخرین بخش مهم کتاب به خانوادههای چرخه پرداخته شده است. جنبه های توپولوژیکی آنها به روشی سیستماتیک توسعه یافته و برخی از کاربردهای اساسی و مهم خانواده های تحلیلی چرخه ها ارائه شده است. ساخت فضای چرخه به عنوان یک فضای پیچیده، همراه با کاربردهای مهم متعدد، در جلد دوم آورده شده است. کتاب حاضر ترجمه ای از نسخه فرانسوی است که در سال 2014 توسط انجمن ریاضی فرانسه منتشر شده است.
فهرست مطالب :
Preface to the English Edition
Contents of Volume II
Acknowledgments
Contents
1 Preliminary Material
1.1 Holomorphic Mappings
1.1.1 Definitions
1.1.2 The Case Where E is Finite-Dimensional
1.1.3 Holomorphic= Analytic for Arbitrary E
1.2 Complex Manifolds
1.2.1 Manifolds
1.2.2 Vector Bundles
1.2.3 Projective Space P(E)
1.2.4 Grassmannians
1.2.5 Further Examples of Complex Manifolds
1.2.6 Integration on Oriented Manifolds and Stokes\' Formula
1.2.7 Differential Forms on a Complex Manifold
1.3 Symmetric Products of C
1.3.1 Continuity of Roots
1.3.2 Weierstrass Preparation Theorem
Holomorphic Variation of Roots
A First Application
Weierstrass Preparation Theorem
Division Theorem
1.4 The Symmetric Product of Cp
1.4.1 Symmetric Products of Topological Spaces
1.4.2 Vector Symmetric Functions
1.4.3 Vertical Localization
1.4.4 Canonical Equations
1.4.5 Complex Structure on Symk(Cp)
1.4.6 Stratification
2 Multigraphs and Reduced Complex Spaces
2.1 Reduced Multigraph
2.1.1 Proper Mappings
2.1.2 Analytic Subsets
2.1.3 Analytic Continuation
2.1.4 Analytic Étale Coverings
2.1.5 Reduced Multigraphs
2.1.6 Local Study of Reduced Multigraphs
2.1.7 Irreducibility of Reduced Multigraphs
Irreducible Components
Path Connectedness
Trace and Norm: A First Direct Image Theorem
2.2 Multigraphs
2.2.1 Basic Definitions
2.2.2 Classification Map and the Canonical Equation
2.3 Analytic Subsets
2.3.1 Local Parameterization Theorem: First Version
2.3.2 Irreducible Components and Singular Locus
2.3.3 Maximum Principle
2.3.4 Ramified Covers
2.3.5 Local Parameterization Theorem: Final Version
2.3.6 Analyticity of the Singular Locus
2.4 Reduced Complex Spaces
2.4.1 Definitions and Elementary Properties
2.4.2 Singular Locus and Irreducible Components
2.4.3 Dimension and Local Irreducibility
2.4.4 Minimal Embeddings and the Zariski Tangent Space
2.4.5 Fiber Dimension and Generic Rank
2.4.6 Symmetric Product of a Reduced Complex Space
2.4.7 Proper Finite Mappings
2.4.8 Remmert–Stein Theorem
2.5 Notes on Chapter 1 and this chapter
2.5.1 The Preparation and Division Theorems
2.5.2 The Local Parameterization Theorem
2.5.3 The Three Definitions of Ramified Covers
2.5.4 Complex Spaces
2.5.5 The Theorem of Remmert–Stein
3 Analysis and Geometry on a Reduced Complex Space
3.1 Transversality and the Zariski Tangent Cone
3.1.1 Transverse Planes to an Analytic Subset
3.1.2 Algebraic Cones
3.1.3 Transversality and the Tangent Cone
3.1.4 Zariski Tangent Cycle
3.2 The Theorem of P. Lelong
3.2.1 Introduction
3.2.2 Preliminaries
3.2.3 The Case of a Reduced Multigraph
3.2.4 Differential Forms on a Reduced Complex Space
Differentiable Functions on a Reduced Complex Space
Differential Forms on a Reduced Complex Space
Natural Topology on Spaces of Differential Forms
3.2.5 Lelong\'s Theorem : General Case
3.2.6 Volume
3.3 Coherent Sheaves
3.3.1 Coherent Sheaves on a Reduced Complex Space
3.3.2 Canonical Topology
An Application
3.4 Modifications and Blowups
3.4.1 Modifications
3.4.2 Blowups
3.4.3 Meromorphic Mappings
3.5 Normalization
3.5.1 Normal Spaces
3.5.2 Meromorphic Functions
3.5.3 Locally Bounded Meromorphic Functions
3.5.4 Universal Denominators
3.5.5 Additional Material on Normality
3.5.6 Normalization
3.5.7 The Weak Normalization
3.5.8 Complementary Material on Meromorphic Functions
3.6 Local Bound of Volume of General Fibers
3.6.1 Local Blowing Up
3.6.2 The Theorem
3.7 Direct Image and Enclosure
3.7.1 Holomorphic Mappings with Values in a TVS
3.7.2 Reduced Multigraphs in a Sequentially Complete TVS
3.7.3 The Direct Image Theorem
3.7.4 Theorem on Encloseability
The Symmetric Algebra of a Topological Vector Space
Proof of the Encloseability Theorem
3.8 Holomorphic Convexity: The Quotient Theorem
3.8.1 Dirac Mapping
3.8.2 Holomorphically Convex Spaces
3.8.3 Stein Spaces and the Remmert Reduction
3.8.4 The Quotient Theorem of H. Cartan
3.9 Notes on This Chapter
3.9.1 Transversality and the Zariski Tangent Cone
3.9.2 Algebraic Cones
3.9.3 The Theorem of P. Lelong, Canonical Topology, Modifications and Blowups
3.9.4 Normalization
3.9.5 Weak Normalization
3.9.6 Bound of Volume of General Fibers
3.9.7 Direct Image and Encloseability: Holomorphic Convexity
3.9.8 Quotient Theorem
4 Families of Cycles in Complex Geometry
4.1 Families of Cycles
4.1.1 Cycles
Why Cycles?
Basic Definitions
4.1.2 Elementary Operations on Cycles
Addition and Order
The Universal Family of Cycles
4.1.3 Functorial Properties
Restriction to Open Subsets
The Direct Image of a Cycle
Direct Image: The Case of a Proper Morphism
The Case of a Closed Embedding
Direct Image: The General Case
Cartesian Product
4.2 Continuous Families of Cycles
4.2.1 Scales
4.2.2 Topology of Cnloc(M) and of Cn(M)
Topology of Cn(M)
The Natural Topology on H(, `3́9`42`\"̇613A``45`47`\"603ASymk(B))
The Natural Map μ: Ωk(E)→H(, `3́9`42`\"̇613A``45`47`\"603ASymk(B))
4.2.3 Functions Defined by Integration
Local Character of the Topology of Cnloc(M)
4.2.4 Cnloc(M) and Cn(M) are Second Countable
4.2.5 Continuity of Direct Image Maps
Direct Image with Parameters
4.2.6 Integration of Cohomology Classes: Topological Case
4.2.7 Compactness and the Theorem of E. Bishop
Topology and Hausdorff Metric
The Topology on Cnloc(M) and the Hausdorff Topology on K(M)*
Compactness in Cnloc(M)
Compactness in Cn(M)
4.2.8 Cycles as Currents
Preface
Direct Image of Cycles and Direct Image of Currents
Wirtinger\'s Inequality and the Weak Topology
4.3 Analytic Families of Cycles
4.3.1 Basic Definitions
4.3.2 Multiplicity of a Point in a Cycle
4.3.3 Graph of an Analytic Family of Cycles
4.3.4 The Case of a Normal Parameter Space
4.3.5 Stability of Analytic Families by Direct Images
4.4 Fundamental Counterexample
4.4.1 What Does Not Work!
4.4.2 Example
4.5 Characterization of Isotropic Morphisms: Applications
4.5.1 Isotropic Morphisms
4.5.2 Integration of Cohomology Classes
Complex Découpage
4.6 Finiteness of the Space of Cycles: Applications
4.6.1 Finiteness Theorem
4.6.2 Some Consequences
4.7 Theorem on Connectedness
4.7.1 Number of Irreducible Components
4.7.2 Connected Cycles
4.8 Relative Cycles
4.8.1 Preliminaries
4.8.2 The Space of Cycles Relative to a Morphism
4.9 Fibers of a Proper Meromorphic Mapping
4.9.1 The Case of a Proper Holomorphic Map
4.9.2 The Case of a Proper Meromorphic Map
4.9.3 Almost Holomorphic Mappings
4.10 Analytic Families of Holomorphic Mappings
4.11 Appendix I: Complexification
4.11.1 Conjugation on a Complex Vector Space
4.11.2 Complexification of a Real Vector Space
4.11.3 The Complex Case
4.11.4 Orientation of a Complex Vector Space
4.11.5 The Space p,pR(E)
4.11.6 Positivity in the Sense of P. Lelong
4.12 Appendix II: Locally Convex Topological Vector Spaces
Bibliography
Index
توضیحاتی در مورد کتاب به زبان اصلی :
The book consists of a presentation from scratch of cycle space methodology in complex geometry. Applications in various contexts are given. A significant portion of the book is devoted to material which is important in the general area of complex analysis. In this regard, a geometric approach is used to obtain fundamental results such as the local parameterization theorem, Lelong' s Theorem and Remmert's direct image theorem. Methods involving cycle spaces have been used in complex geometry for some forty years. The purpose of the book is to systematically explain these methods in a way which is accessible to graduate students in mathematics as well as to research mathematicians. After the background material which is presented in the initial chapters, families of cycles are treated in the last most important part of the book. Their topological aspects are developed in a systematic way and some basic, important applications of analytic families of cycles are given. The construction of the cycle space as a complex space, along with numerous important applications, is given in the second volume. The present book is a translation of the French version that was published in 2014 by the French Mathematical Society.