Composite Solutions for Ballistics

دانلود کتاب Composite Solutions for Ballistics

35000 تومان موجود

کتاب راه حل های ترکیبی برای بالستیک نسخه زبان اصلی

دانلود کتاب راه حل های ترکیبی برای بالستیک بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد

این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 13


توضیحاتی در مورد کتاب Composite Solutions for Ballistics

نام کتاب : Composite Solutions for Ballistics
ویرایش : 1
عنوان ترجمه شده به فارسی : راه حل های ترکیبی برای بالستیک
سری : Woodhead Publishing Series in Composites Science and Engineering
نویسندگان : , ,
ناشر : Woodhead Publishing
سال نشر : 2021
تعداد صفحات : 384
ISBN (شابک) : 012821984X , 9780128219904
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 19 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover
Composite Solutions for Ballistics
Copyright
Contents
List of contributors
About the editors
Preface
Acknowledgment
Part A Overview of ballistics
1 State-of-the-art review on recent advances and perspectives of ballistic composite materials
1.1 Introduction
1.2 History of ballistics
1.3 Kinds of ballistic protective materials and equipment
1.4 Applications of ballistic study
1.4.1 Evolution of materials
1.4.1.1 Ultrahigh-molecular-weight polyethylene
1.4.1.2 Aramid fibers
1.4.1.3 Kevlar composites
1.4.1.4 Ballistic fiberglass
1.4.1.5 Carbon fiber
1.4.1.6 Natural fibers
1.4.1.7 High-density polyethylene/UHMWPE polymer composite
1.4.1.8 Ceramic fiber
1.4.1.9 Ballistic fabric
1.4.2 Mechanics of ballistics
1.4.2.1 Experimental approach
1.4.2.2 Analytical approaches
1.4.2.3 Numerical modeling approach
1.4.2.4 Empirical methods
1.4.2.5 Combinations of two or more approaches
1.4.2.6 Others
Mechanics of Kevlar composites
Impact behavior of HDPE/UHMWPE polymer composite
1.4.3 Clinical and forensic study
1.4.3.1 Ballistic response of the bullet
1.4.3.2 Energy transfer characteristics of gunshot wounds
1.4.3.3 Mechanisms of injuries for gunshot
Momentum and energy of the projectile
Pressure wave and temporary cavitation
Yawing, fragmenting, and tumbling
Direct damage of tissue
Cavitation
Bone injuries
Head injuries
1.5 Conclusions
Acknowledgments
References
2 Materials selection for ballistics
2.1 Background
2.2 Ballistic fabrics
2.2.1 Energy dissipation mechanism
2.2.2 Fabric features affecting ballistic performance
2.2.3 Quantification of ballistic fabric performance
2.2.4 Property deterioration due to temperature and ultraviolet radiation
2.2.5 Enhancement of ballistic performance
2.2.6 Three-dimensional woven architecture
2.2.7 Innovative fabric systems
2.3 Laminated composites and integral armor
2.3.1 Integral armor
2.3.1.1 Alumina/aluminum-laminated composite structure
2.3.1.2 Fiber metal laminates
2.3.1.3 Aluminum foam
2.3.2 Flexible composite armor
2.3.2.1 Fabric systems
2.3.2.2 Polymer composites
2.3.2.3 Blunt trauma reduction armor
2.3.3 Nanomaterial systems and futuristic design concepts for ballistics
2.3.3.1 Nanocomposites
2.3.3.2 Ballistic performance of CNTs
2.3.3.3 CNT hybrid composite armor
2.3.3.4 Kevlar/nylon and CNT fibers/nylon composites
2.3.3.5 Inorganic fullerene nanotubes
2.3.3.6 Futuristic design concepts
2.3.3.6.1 Micro-truss armor
2.3.3.6.2 Biomimetic material systems
2.3.3.6.3 Natural fiber composites
2.4 An assessment of composite and hybrid armor systems
2.5 Digest and remarks
References
3 Levels of ballistic protection and testing
3.1 General introduction
3.2 Ballistic protective materials
3.3 Ballistic behavior of personal protective equipment
3.4 Levels of personal ballistic protection
3.4.1 NIJ Standard-0101.04—Ballistic Resistance of Personal Body Armor (2001)
3.4.2 NIJ Standard-0101.06—Ballistic Resistance of Body Armor (2008)
3.4.3 NIJ Standard-0101.07—Ballistic Resistance of Body Armor
3.4.4 UK Home Office Scientific Development Branch (HOSDB) standard
3.4.5 VPAM BSW 2006—Ballistic Protective Vest
3.4.6 GOST R 50744-95 Armored Clothing, Classification and General Technical Requirements standard
3.4.7 NATO STANAG 2920 AEP Ed.3 Standards
3.4.8 NIJ Standard-0106.01—Ballistic Helmets (1981)
3.4.9 VPAM HVN 2009 Bullet-resistant helmet with visor and neck guard
3.4.10 NIJ Standard-0108.01—Ballistic Resistant Protective Materials (1985)
3.4.11 VPAM APR 2006—General basis for ballistic material, construction and product testing threat/protection levels
3.4.12 AS/NZS 2343:1997 Standard—Australian and New Zealand standards
3.4.13 German Schutzklasse Standard Edition 2008
3.5 Ballistic testing on personal protective equipment
3.5.1 Body armor system
3.5.1.1 Number of samples
3.5.1.2 Test configuration
3.5.1.3 Analysis
3.5.2 Ballistic helmets
3.5.2.1 Testing requirement
3.5.2.2 Method/setup
Ballistic penetration test
3.6 Measurement of V50 performance of personal ballistic armor
3.6.1 MIL-STD-662F—V50 Ballistic Test for Armor
3.6.1.1 Ballistic limit
3.6.1.2 V50 for ballistic helmet
3.6.1.3 V50 ballistic limit for explosive ordnance disposal (EOD)
3.7 Ammunition for PPE ballistic testing
3.7.1 Ammunition component
3.7.1.1 Cartridge
Functional type of cartridges
Cartridge headstamp
Cartridge case type and shape
Case composition
3.7.2 Projectile
3.7.2.1 Projectile shape, weight, and jacket
3.8 Summary
Acknowledgments
References
Further reading
4 Personal and structural protection
4.1 Background
4.2 Personal protection
4.2.1 Body armor
4.2.1.1 Background
4.2.1.2 Carrier vest
4.2.1.3 Soft armor panel
4.2.1.4 Hard armor plate
4.2.1.5 Types of body armor/vest
American vest
European vest
Asian vest
Police force vest
4.2.1.6 Testing of body armors
V50 testing for ballistic vest
NIJ testing for ballistic vest
4.2.2 Combat helmet
4.2.2.1 Background
4.2.2.2 Types of combat helmet
American helmet
British helmet
French helmet
Australian helmet
Russian helmet
4.2.2.3 Testing standards for combat helmets
NIJ testing for combat helmet
V50 testing for combat helmet
4.2.3 Ballistic boots
4.2.3.1 Spider boot
4.2.3.2 Overboot
4.2.3.3 Testing of ballistic boots
4.2.4 Shields
4.2.4.1 Background
4.2.4.2 Movable shield
4.2.4.3 Handheld shield
4.2.4.4 Testing of ballistic shields
4.2.5 Bomb blanket
4.2.5.1 Testing of bomb blanket
4.3 Structural protection
4.3.1 Ballistic panels
4.3.2 Ballistic doors and windows
4.3.3 Vehicular protection
4.3.3.1 Type of ballistic vehicles
Tank
Multipurpose, future combat system, expeditionary fighting vehicle, and armored fighting vehicle
Armored aircrafts
Armored police and civilian vehicles
4.4 Properties required for an armor
References
Part B Composite solutions
5 Polymer composites
5.1 Introduction
5.2 Matrix in polymer composite
5.3 Reinforcement in polymer composite
5.3.1 Types of reinforcements (material)
5.3.2 Common physical forms of reinforcement
5.4 Polymer composite as advance solutions for ballistic applications
5.4.1 Working principles
5.4.2 Types of materials in ballistic applications
5.4.3 Ballistic performance of composite materials
5.4.4 Composite solutions for ballistic protection
5.4.5 Thermoplastic composites for ballistic applications
5.5 Limitations
References
6 Ceramic composites
6.1 Introduction
6.1.1 Ceramic as matrix
6.1.1.1 Melt infiltration process
6.1.1.2 Hot pressing
6.1.1.3 Reaction sintering
6.1.1.4 Chemical vapor infiltration
6.1.1.5 Direct melt oxidation
6.1.1.6 Sol–gel processing
6.1.2 Ceramic as reinforcement
6.1.2.1 Oxide fibers
6.1.2.2 Nonoxide-based fibers
6.2 Alumina-based composite armors
6.3 Silicon carbide–based composite structures
6.4 Boron carbide–based composite structures
6.5 Nanocomposite-based ceramic coatings
6.6 Transparent ceramic systems
6.7 Fracture analysis of ceramic-based composite materials
6.8 Global market of ceramic composite in ballistics
6.9 Limitations in ballistic efficiency of ceramic composite armor
6.10 Conclusion
References
7 Composite fabrication and joining
7.1 Introduction
7.2 Composite fabrication techniques
7.2.1 Hand layup
7.2.2 Vacuum resin infusion
7.2.3 Resin transfer molding
7.2.4 Prepregs
7.2.5 Compression molding
7.2.6 Autoclave
7.2.7 Selection of fabrication techniques
7.2.8 Postprocessing of ballistic composites
7.3 Material/structure wise fabrication techniques
7.3.1 Para-aramid composite
7.3.2 Self-reinforced composite
7.3.3 3D woven composites
7.3.4 Hybrid composites
7.4 Joining techniques for ballistic protection
7.4.1 Ceramic–polymer composite joining
7.4.2 Ceramic–metal joining
References
8 Use of auxetic material for impact/ballistic applications
8.1 Auxetic materials
8.2 Types of auxetic materials
8.2.1 Naturally occurring auxetic biomaterials
8.2.2 Auxetic polymers
8.3 Commonly used auxetic structures in impact applications
8.3.1 Textile auxetic structures
8.3.1.1 Intrinsic auxetic textile
8.3.1.2 Extrinsic auxetic textile
8.3.1.3 Auxetic yarns
8.3.1.4 Auxetic woven fabrics
8.3.1.5 2D auxetic structure weave design
8.3.1.6 Knitted auxetic fabrics
8.4 Shear thickening fluid (STF)
8.4.1 Mechanism of formation
8.4.2 Composition and fabrication methods of STF
8.4.2.1 Particle-based shear thickening systems
Materials and methodology
Applications
8.4.2.2 Nonparticle-based shear thickening systems
Materials and methodology
Applications
8.4.2.3 Sonochemical method
Materials and methodology
Applications
8.4.3 Characterization of shear thickening fluids
8.4.3.1 Rheological characterization
8.4.3.2 Thermogravimetric analysis (TGA)
8.4.3.3 Transmission electron microscopy (TEM)
8.4.3.4 Scanning electron microscopy (SEM)
8.4.3.5 Dynamic stab test
8.4.3.6 Quasistatic stab tests
8.4.3.7 Flexibility tests and thickness measurements
8.4.4 Applications of STFs in impact/bulletproof applications
8.4.4.1 General application
8.4.4.2 Ballistic-resistant properties
References
9 Natural fiber–reinforced composites for ballistic protection
9.1 Introduction
9.1.1 Natural fibers used in ballistic applications
9.2 Natural fiber–reinforced composites
9.3 Ballistics
9.3.1 Ballistic armor
9.3.2 Types of ballistic vest
9.4 Natural fiber composites in ballistic armors
9.5 Advanced research in natural fiber–reinforced composites in ballistic applications
9.6 Thermoplastic matrix material
9.6.1 Powder impregnation
9.6.1.1 Co-weaving and warp-knitting techniques
9.6.1.2 Commingling
9.7 Techniques for the manufacturing of thermoplastic composites
9.7.1 Vacuum forming of thermoplastic composites
9.7.2 Reactive thermoplastic RTM
9.7.3 Compression molding
References
10 Composite solutions: existing and next generation
10.1 Introduction and background
10.2 Ballistic threats
10.2.1 What is body armor
10.2.1.1 Ballistic levels
10.3 Recent research trends in ballistic protection
10.3.1 Hard body armor
10.3.2 Soft body armor
10.4 Modeling and simulation
10.4.1 Materials for ballistic protection
10.4.1.1 Structures of fabric for body armor
10.4.1.2 Ballistic protection using thermoplastic composites
10.5 The future trends
References
Part C Characterization and modeling
11 Mechanical characterization
11.1 Introduction
11.1.1 Impact damage mechanics
11.1.2 Characterization levels
11.2 Reinforcement characterization
11.2.1 Tensile properties
11.2.2 Frictional properties
11.2.3 Yarn pull-out
11.2.4 Fabric puncture resistance
11.3 Matrix characterization
11.3.1 High-speed puncture
11.3.2 Shear strength
11.3.3 Hardness testing
11.4 Fiber–matrix adhesion
11.4.1 Fiber push-out testing
11.4.2 Peel strength
11.4.3 Fracture toughness
11.5 Composite characterization
11.5.1 Tensile testing
11.5.2 Flexural testing
11.5.3 Impact testing
11.5.4 Penetration resistance
11.5.5 Compression testing
References
12 Simulation of ballistic composites
12.1 Introduction
12.2 Modeling motivation
12.3 Commercial software and solvers
12.4 Case study 1: simulation of high-velocity ballistic impact
12.4.1 Depth of penetration (DOP) methodology
12.4.1.1 Experimental setup
12.4.2 UHMWPE modeling
12.4.3 Results and discussion
12.5 Case study 2 (effect of deflector composite geometry on blast protection)
12.5.1 Introduction to problem
12.5.2 Design
12.5.3 Methodology
12.5.3.1 Numerical simulations
12.5.3.2 Blast tests
12.5.4 Results and summary
12.5.4.1 Numerical simulation results
12.5.5 Conclusion
12.6 Case study 3 (personal protective boot against mine blasts)
12.6.1 Introduction
12.6.2 Experimental study
12.6.3 Numerical analysis
12.6.3.1 Design
12.6.3.2 Materials
12.6.3.3 Finite element modeling
12.6.3.4 Boundary conditions
12.6.4 Result and analysis
12.6.4.1 Blast loading with C4
12.7 Conclusion
12.8 Summary
References
13 Life-cycle assessment of ballistic vest
13.1 Introduction
13.2 General description of LCA
13.2.1 Key features of LCA
13.2.2 Phases of an LCA
13.3 Methodological framework
13.3.1 Definition of goal and scope
13.3.1.1 Goal of the study
13.3.1.2 Scope of the study
Function and functional unit
System boundaries
Data quality requirements
Comparisons between systems
Critical review considerations
13.3.2 Life cycle inventory analysis
13.3.3 Data collection and calculation procedures
13.3.4 Life cycle impact assessment
13.3.5 Life cycle interpretation
13.3.5.1 Reporting
13.3.6 Critical review
13.3.6.1 Need for critical review
13.3.6.2 Critical review processes
13.3.6.3 Internal expert review
13.3.6.4 External expert review
13.3.6.5 Review by interested parties
13.4 ISO LCA approaches
13.4.1 Cradle-to-grave
13.4.2 Cradle-to-gate
13.4.3 Cradle-to-cradle
13.5 Life cycle energy analysis
13.6 LCA of Kevlar/epoxy ballistic composite
13.6.1 Raw material
13.6.2 Manufacturing
13.6.3 Application/usage
13.6.4 End of life
13.7 Durability of ballistic composites
References
Index
Backcover




پست ها تصادفی