توضیحاتی در مورد کتاب Comprehensive Inorganic Chemistry III. Volume 2: Bioinorganic Chemistry and Homogeneous Biomimetic Inorganic Catalysis
نام کتاب : Comprehensive Inorganic Chemistry III. Volume 2: Bioinorganic Chemistry and Homogeneous Biomimetic Inorganic Catalysis
ویرایش : 3
عنوان ترجمه شده به فارسی : شیمی معدنی جامع III. جلد 2: شیمی بیوان آلی و کاتالیز معدنی بیومیمتیک همگن
سری : Comprehensive Inorganic Chemistry III
نویسندگان : Reedijk J.. Poeppelmeier K.R. (ed.), Pecoraro V.L.. Guo Z. (vol.ed.)
ناشر : Elsevier
سال نشر : 2023
تعداد صفحات : 888
ISBN (شابک) : 9780128231449
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 39 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover
Half Title
Comprehensive Inorganic Chemistry III. Volume 2: Bioinorganic Chemistry and Homogeneous Biomimetic Inorganic Catalysis
Copyright
Contents of Volume 2
Editor Biographies
Volume Editors
Contributors to Volume 2
Preface
2.01. Introduction: Bioinorganic chemistry and homogeneous biomimetic inorganic catalysis
Abstract
2.02. Siderophores and iron transport
Content
Abstract
2.02.1 Introduction
2.02.2 Structures of bacterial and fungal siderophores
2.02.2.1 Sideromycins
2.02.3 Characterization of Fe(III)–siderophore complexes
2.02.3.1 X-ray crystallography
2.02.3.1.1 Hydroxamic acid
2.02.3.1.2 Catechol
2.02.3.1.3 Mixed-ligand
2.02.3.1.4 Pyoverdine
2.02.4 A new siderophore functional group
2.02.4.1 N-nitroso-N-hydroxylamine
2.02.4.1.1 X-ray crystallography
2.02.5 Siderophore adaptations
2.02.5.1 Marine organisms
2.02.6 Biosynthesis of siderophores
2.02.6.1 Nonribosomal peptide synthetase (NRPS) pathways
2.02.6.1.1 Pyoverdine chromophore
2.02.6.2 Nonribosomal peptide synthetase-independent siderophore (NIS) pathways
2.02.6.2.1 Desferrioxamine B
2.02.6.3 Precursor-directed biosynthesis and mutasynthesis
2.02.6.3.1 Hydroxamic acid
2.02.6.3.2 Catechol
2.02.6.3.3 Mixed-ligand
2.02.7 Siderophore uptake and transport
2.02.7.1 Gram-negative bacteria
2.02.7.2 Gram-positive bacteria
2.02.7.3 Release of Fe(III)
2.02.7.4 Chirality
2.02.8 Siderophores in infection and stealth siderophores
2.02.9 Applications of siderophores
2.02.10 Conclusion
Acknowledgments
References
2.03. Metal ion homeostasis: Metalloenzyme paralogs in the bacterial adaptative response to zinc restriction
Content
Abstract
2.03.1 Metal ion homeostasis
2.03.2 Nutritional immunity and pathogen adaptation
2.03.3 Metalloenzyme “paralogs”
2.03.3.1 Category 1: Metal-independent paralogs
2.03.3.1.1 Ribosomal C– paralogs
2.03.3.1.2 DksA/DksA2
2.03.3.2 Category 2: Obligatory Zn-dependent paralogs
2.03.3.2.1 QueD/QueD2
2.03.3.2.2 PyrC/PyrC2
2.03.3.2.3 HisI
2.03.3.3 Category 3: Zn-independent or metal-promiscuous paralogs
2.03.3.3.1 FolE/FolE2
2.03.3.3.2 HemB/HemB2
2.03.3.4 Others
2.03.3.4.1 Carbonic anhydrase
2.03.3.4.2 ThrRS2/CysRS2
2.03.3.4.3 Bacterial cell wall remodeling enzymes
2.03.4 Conclusions and perspectives
Acknowledgments
References
2.04. Metallomics and metalloproteomics
Content
Abbreviations
Abstract
2.04.1 Introduction
2.04.1.1 Metallomics
2.04.1.2 Metalloproteomics
2.04.2 Technical platform for metallomics and metalloproteomics
2.04.2.1 Separation techniques
2.04.2.2 Detection techniques
2.04.2.3 Identification techniques
2.04.2.4 Structure analysis techniques
2.04.2.5 Computer-aided approaches
2.04.3 Application of metallomics and metalloproteomics for metallodrug research
2.04.3.1 Platinum
2.04.3.2 Ruthenium
2.04.3.3 Bismuth
2.04.3.4 Silver
2.04.3.5 Gold
2.04.3.6 Arsenic
2.04.4 Application of metallomics and metalloproteomics for environmental health and toxicology
2.04.4.1 Mercury
2.04.4.2 Lead
2.04.4.3 Cadmium
2.04.5 Summary and outlook
References
2.05. Biomineralization
Content
Abstract
2.05.1 Introduction
2.05.2 Crystallization in biomineralization
2.05.2.1 Classical crystallization
2.05.2.2 Nonclassical crystallization
2.05.2.2.1 Amorphous precursor
2.05.2.2.2 Phase-transformation-based crystallization
2.05.2.2.3 Nano attachment
2.05.3 Organic matrix and its regulation effect
2.05.3.1 Organic-inorganic interface
2.05.3.2 Template effect
2.05.3.3 Confinement effect
2.05.4 Application of biomineralization for tissue regeneration
2.05.4.1 Collagen mineralization
2.05.4.2 Tooth repair
2.05.4.3 Bone repair
2.05.5 Organism improvement
2.05.5.1 Artificial shell
2.05.5.2 Bioenergy
2.05.5.3 Environmental protection
2.05.5.4 Biomedical therapy
2.05.5.4.1 Vaccine improvement
2.05.5.4.2 Cancer treatment
2.05.6 Conclusion
References
2.06. Iron-sulfur clusters – functions of an ancient metal site
Content
Abstract
2.06.1 Introduction
2.06.2 Type of centers and variability of coordination
2.06.2.1 Basic structures and cluster coordination modes
2.06.2.1.1 [1Fe] cluster
2.06.2.1.2 [2Fe-2S] cluster
2.06.2.1.3 [3Fe-4S] cluster
2.06.2.1.4 [4Fe-4S] cluster
2.06.2.1.5 Linear clusters and cluster interconversions
2.06.2.2 Complex iron-sulfur clusters
2.06.2.2.1 Unique clusters
2.06.2.2.2 Organometallic and mixed-metal clusters
2.06.3 Direct catalysis at iron-sulfur clusters
2.06.3.1 Radical-SAM enzymes
2.06.3.1.1 Examples of radical-SAM enzymes
2.06.3.1.1.1 Radical SAM mutases - lysine 2,3-aminomutase
2.06.3.1.1.2 Catalysis of sulfur insertion - biotin synthase
2.06.3.1.1.3 Glycyl radical enzyme activation - pyruvate formate-lyase activating enzyme
2.06.3.1.1.4 Catalysis of methylations by RlmN and Cfr
2.06.3.1.1.5 Dehydration – synthesis of ribonucleotide - viperin
2.06.3.1.1.6 Atypical SAM-dependent enzymes
2.06.3.2 Iron-sulfur (de)hydratases
2.06.3.2.1 Aconitase
2.06.3.2.2 IspG and IspH involved in isoprenoid biosynthesis
2.06.3.2.3 Pentonate dehydratases
2.06.3.3 ADP-ribosyltransferases (unusual iron-sulfur cluster)
2.06.3.4 Other enzymatic activities
2.06.4 Iron-sulfur clusters involved in metabolic regulation
2.06.4.1 Post-transcriptional regulation of iron homeostasis
2.06.4.2 Transcription regulators
2.06.4.2.1 Rrf2 family
2.06.4.2.2 CRP-family
2.06.4.2.3 Other transcription regulators
2.06.5 The role of iron-sulfur clusters in DNA processing enzymes
2.06.5.1 DNA repair glycosylases
2.06.6 Conclusions
References
2.07. [FeFe]-hydrogenases: Structure, mechanism, and metallocluster biosynthesis
Content
Abbreviations
Abstract
2.07.1 Introduction
2.07.2 [FeFe]-Hydrogenases structure and mechanism
2.07.2.1 Structural features of [FeFe]-hydrogenases
2.07.2.2 Reaction mechanism of [FeFe]-hydrogenases
2.07.3 H-cluster biosynthetic proteins
2.07.3.1 The radical-SAM enzyme HydG
2.07.3.1.1 Structure of HydG
2.07.3.1.2 Leads from sequence alignments: Tyrosine is the substrate
2.07.3.1.3 The N-terminal [4Fee4S]RS mediates radical chemistry
2.07.3.1.4 The C-terminal [4Fee4S]AUX of HydG is a platform for the assembly of a [Fe(CO)2(CN)] species precursor to the [2Fe]H subcluster
2.07.3.1.5 HydG enzyme mechanism
2.07.3.2 The radical-SAM enzyme HydE
2.07.3.2.1 HydE structure
2.07.3.2.2 The radical-SAM enzyme HydE acts on the HydG product
2.07.3.2.3 CH2NCH2 moiety of the azapropanedithiolate bridge derives from a serine amino acid residue
2.07.3.3 The scaffold HydF protein
2.07.3.3.1 HydF: A [4Fee4S] protein with ability to bind a precursor of the [2Fe]H subcluster
2.07.3.3.2 Structure of HydF
2.07.3.3.3 HydF, a GTP-binding protein
2.07.3.4 H-cluster of [FeFe]-hydrogenase: Mechanism of bioassembly
2.07.4 Conclusion
Acknowledgements
References
2.08. Heme-containing proteins: Structures, functions, and engineering
Content
Abstract
2.08.1 Myoglobin
2.08.1.1 Heme analogs with a different central metal or modified side chain
2.08.1.2 Porphyrinoids with modified heme (porphyrin) skeleton
2.08.1.3 Metal complexes other than porphyrins and porphyrinoids
2.08.2 Cytochrome P450
2.08.2.1 Cytochrome P450s catalyzing monooxygenation
2.08.2.2 Cytochrome P450s catalyzing peroxygenase
2.08.3 Heme acquisition protein
References
2.09. Engineering of hemoproteins
Content
Abstract
2.09.1 Introduction
2.09.2 Hemoproteins
2.09.3 Modification of hemoproteins
2.09.4 Oxidation
2.09.4.1 Modification of the heme pocket of myoglobin
2.09.4.2 Modification of heme-propionate side chains
2.09.4.3 Modification of the heme framework: Reconstitution with an iron porphyrinoid
2.09.4.4 Insertion of a non-porphyrinoid metal complex into apomyoglobin
2.09.5 Hydroxylation
2.09.5.1 Conversion of myoglobin to hydroxylase
2.09.5.2 Modification of substrate specificity of cytochrome P450BM3
2.09.6 Carbene and nitrene transfer reactions
2.09.6.1 Genetic engineering of hemoproteins toward abiological reactions
2.09.6.2 Metal substitutions of heme cofactor
2.09.6.3 Modification of the heme framework
2.09.7 Reactions by Co and Ni porphyrinoids in hemoproteins
2.09.7.1 Hemoprotein reconstituted with cobalt porphyrinoid
2.09.7.2 Hemoprotein reconstituted with nickel porphyrinoid
2.09.8 Conclusion
References
2.10. The biochemistry and enzymology of zinc enzymes
Content
Abbreviations
2.10.1 Introduction
2.10.2 Zinc is an essential transition metal ion for life
2.10.3 Cell biology of zinc
2.10.3.1 Distribution and ubiquity of zinc proteins in the proteomes
2.10.3.2 Zinc homeostasis
2.10.4 Chemistry of zinc enzymes
2.10.4.1 Chemical properties of zinc
2.10.4.2 Zinc ligands and their role in modulating the activity of catalytic zinc centers
2.10.4.3 The impact of second-shell ligands in zinc reactivity
2.10.4.4 The pKa of zinc-bound water molecules
2.10.5 Zinc-dependent enzymes
2.10.5.1 Zinc lyases
2.10.5.1.1 Carbonic anhydrases
2.10.5.2 Zinc hydrolases
2.10.5.2.1 Mononuclear zinc hydrolases
2.10.5.2.2 Binuclear zinc hydrolases
2.10.5.3 Zinc alcohol dehydrogenases and other zinc-dependent oxidoreductases
2.10.5.4 Zinc transferases
2.10.5.5 Zinc isomerases
2.10.5.6 Zinc ligases
References
2.11. Cobalt enzymes
Content
Abstract
2.11.1 Introduction
2.11.2 Structures of the B12-derivatives
2.11.2.1 “Incomplete” and “complete” corrinoids
2.11.2.2 The “base-on/base-off” switch of “complete” corrinoids
2.11.3 Organometallic and redox-chemistry of B12-derivatives
2.11.3.1 On the homolytic cleavage and formation of the CoeC bond
2.11.3.2 On the nucleophile-induced heterolysis and formation of the Co-C bond
2.11.3.3 On the radical-induced abstraction of cobalt-bound methyl groups
2.11.4 Cobalt-corrins as cofactors and intermediates in enzymes
2.11.4.1 B12-dependent methyl transferases
2.11.4.1.1 Cobamide-dependent methionine synthase
2.11.4.1.2 Corrinoid methyl group transferases in anaerobic methane metabolism
2.11.4.1.3 Corrinoid methyl group transferases in bacterial acetate metabolism
2.11.4.1.4 B12-dependent radical-SAM methyl group transferases
2.11.4.2 Enzymes dependent on coenzyme B12 and related adenosylcobamides
2.11.4.2.1 Carbon-skeleton mutases
2.11.4.2.2 Coenzyme B12-dependent isomerases
2.11.4.2.3 Coenzyme B12-dependent ribonucleotide reductases
2.11.4.3 B12-processing enzymes
2.11.4.3.1 Adenosyltransferases
2.11.4.3.2 Cobalamin-deligase CblC
2.11.4.4 B12-dependent dehalogenases
2.11.5 B12-derivatives as ligands of proteins and nucleic acids
2.11.5.1 B12-binding proteins for uptake and transport in mammals and bacteria
2.11.5.2 Cobalamins as gene-regulatory RNA-ligandsdB12-riboswitches
2.11.5.3 Coenzyme B12 as light-sensitive ligand in photo-regulatory proteins
2.11.6 Why cobalt?—B12-analogs with other metals and antivitamins B12
2.11.7 Summary and outlook
References
2.12. Biological and synthetic nitrogen fixation
Content
Abstract
2.12.1 Introduction
2.12.2 Biological nitrogen fixation (by O. Einsle)
2.12.2.1 Nitrogenase enzymes
2.12.2.1.1 The role of Fe protein
2.12.2.1.2 Mo-dependent nitrogenase
2.12.2.1.3 V-dependent nitrogenase
2.12.2.1.4 Fe-only nitrogenase
2.12.2.1.5 Biogenesis of nitrogenase cofactors
2.12.2.2 Properties and function of nitrogenase cofactors
2.12.2.2.1 The Lowe-Thorneley model
2.12.2.2.2 Electronic structure of resting state FeMo cofactor
2.12.2.2.3 Hydride formation and unproductive H2 release
2.12.2.2.4 Reductive elimination of H2 generates a super-reduced state
2.12.2.2.5 A Dinuclear binding site for substrates
2.12.2.3 CO reduction by V-dependent nitrogenase
2.12.2.3.1 Requirements for binding different substrates
2.12.2.3.2 Provision of electrons and protons in nitrogenase cofactors
2.12.2.3.3 CO-bound structures are dead-end adducts
2.12.2.3.4 CO is activated by insertion of a hydride
2.12.2.3.5 Continuous electron and proton supply in three phases
2.12.2.3.6 Product release
2.12.2.4 Summary and conclusion
2.12.2.4.1 N2 binds to the E4 state
2.12.2.4.2 Reductive elimination of H2 is linked to N2 binding
2.12.3 Synthetic nitrogen fixation (by T. A. Engesser and F. Tuczek)
2.12.3.1 Mononuclear molybdenum systems
2.12.3.1.1 The Schrock catalyst
2.12.3.1.2 The Chatt cycle
2.12.3.2 Dinuclear molybdenum systems
2.12.3.3 Mononuclear iron systems
2.12.3.3.1 Peters’ systems
2.12.3.3.2 Nishibayashi’s systems
2.12.3.4 Dinuclear iron systems
2.12.3.5 Systems with other transition metals
2.12.3.5.1 Cobalt
2.12.3.5.2 Ruthenium and osmium
2.12.3.5.3 Titanium
2.12.3.5.4 Vanadium
2.12.3.5.5 Rhenium
2.12.3.5.6 Chromium
2.12.3.6 Lessons from small-molecule models
2.12.4 Summary: Toward a comprehensive understanding of biological and synthetic nitrogen fixation
References
2.13. Photosynthesis
Content
Abstract
2.13.1 Introduction
2.13.2 Photosynthetic reaction centers
2.13.3 Function of photosystem II
2.13.3.1 Architecture of photosystem II
2.13.3.2 Electron transfer chain
2.13.3.3 Energetics of the water oxidation reaction
2.13.3.3.1 Redox potential
2.13.3.3.2 Quantum efficiency
2.13.4 S-state transition of the oxygen evolving complex
2.13.4.1 Kok cycle
2.13.4.2 Capturing intermediate S-states
2.13.4.3 The OEC structure
2.13.4.3.1 The S1 state
2.13.4.3.2 The S2 state
2.13.4.3.3 The S3 state
2.13.4.3.4 The S0 state
2.13.4.3.5 Structural/Spin isomers in each S-state and its functional role
2.13.4.4 Structural changes during the S-state transitions
2.13.5 Channels
2.13.5.1 Identifying channels
2.13.5.2 Oxygen channel
2.13.5.3 Water channel
2.13.5.4 Proton channel
2.13.6 Mechanism of photosynthetic O2 evolution
2.13.7 Light-driven assembly of the manganese cluster
2.13.8 Several techniques that are fundamental to the PSII research
2.13.8.1 EPR
2.13.8.2 Mass spectroscopy
2.13.8.3 X-ray spectroscopy
2.13.8.4 Infrared spectroscopy
2.13.8.5 X-ray crystallography at X-ray free electron lasers
2.13.8.6 Cryo-electron microscopy
2.13.9 Perspective
References
Further reading
2.14. Bio-inspired catalysis
Content
Abstact
2.14.1 Bioinspired oxidation
2.14.1.1 Introduction
2.14.1.2 C—H bond oxidations
2.14.1.2.1 Alkanes and cycloalkanes
2.14.1.2.2 Alkyl benzenes
2.14.1.3 C=C oxidation
2.14.1.4 Alcohol oxidation
2.14.1.5 Ketone oxidation
2.14.1.6 Conclusion
2.14.2 Bioinspired energy-relevant catalysis
2.14.2.1 Bioinspired oxygen reduction reactions
2.14.2.1.1 Introduction
2.14.2.1.2 Fe-related metal complexes
2.14.2.1.3 Co-related metal complexes
2.14.2.1.4 Cu-related metal complexes
2.14.2.1.5 Conclusion
2.14.2.2 Bioinspired carbon dioxide reduction
2.14.2.2.1 Introduction
2.14.2.2.2 Mimics of FDH
2.14.2.2.3 Mimics of CODH
2.14.2.2.4 Conclusion
2.14.2.3 Bioinspired hydrogen evolution reaction
2.14.2.3.1 Introduction
2.14.2.3.2 Mimics of [NiFe] hydrogenase
2.14.2.3.3 Mimics of [FeFe] hydrogenase
2.14.2.3.4 Metal chlorin
2.14.2.3.5 Biohybrid systems
2.14.2.3.6 Conclusion
2.14.3 Bioinspired bond-forming reactions
2.14.3.1 Introduction
2.14.3.2 CeC bond formation
2.14.3.2.1 CeC bond-forming enzymes
2.14.3.2.2 Bioinspired CeC bond-forming reactions
2.14.3.3 CeN bond formation
2.14.3.4 CeO bond formation
2.14.3.5 NeN bond formation
2.14.3.5.1 N2O-forming enzymes
2.14.3.5.2 Bioinspired N2O-forming reactions
2.14.3.5.3 N2-forming enzymes
2.14.3.5.4 Bioinspired N2-forming reactions
2.14.3.5.5 Other enzyme-mimicking catalysts
2.14.3.6 Conclusion
References
2.15. Imaging
Content
Abstract
2.15.1 Introduction
2.15.2 X-ray computed tomography
2.15.2.1 Targeted imaging
2.15.2.2 Multimodal imaging
2.15.2.3 Combined imaging and therapy- image-guided therapy
2.15.2.4 Conclusions
2.15.3 Optical and near-IR imaging
2.15.3.1 Optical imaging with inorganic compounds and materials
2.15.3.2 Trivalent lanthanide-based luminescence and imaging
2.15.3.2.1 Targeted imaging using LnIII luminescent probes
2.15.3.2.2 Packaging systems for LnIII imaging probes
2.15.3.2.3 Other applications of LnIII luminescence for bioimaging
2.15.3.3 Imaging with 4d and 5d transition metal complexes
2.15.3.4 Cherenkov radiation with inorganic lumiphores
2.15.3.5 Conclusions
2.15.4 Magnetic particle imaging (MPI)
2.15.4.1 Magnetic particle imaging
2.15.4.2 Iron-cobalt nanoparticles for MPI
2.15.4.3 Variation on nanoparticle coatings and construction in MPI
2.15.4.4 Conclusions
2.15.5 Ultrasound and photoacoustic imaging
2.15.5.1 Imaging with sound waves
2.15.5.2 Ultrasound imaging
2.15.5.3 Photoacoustic imaging
2.15.5.4 Conclusions
2.15.6 Magnetic resonance imaging (MRI)
2.15.6.1 Contrast agents
2.15.6.2 GdIII-containing contrast agents and alternatives
2.15.6.3 Iron oxide agents
2.15.6.4 Chemical exchange saturation transfer (CEST)
2.15.6.5 PARASHIFT probes
2.15.6.6 19F probes
2.15.6.7 Responsive contrast agents
2.15.6.8 Conclusions
2.15.7 Positron emission tomography (PET) and single photon emission computed tomography (SPECT)
2.15.7.1 Nuclides of interest and relevant properties
2.15.7.2 Chelators for complexation and targeting
2.15.7.3 Conclusions
2.15.8 Summary and outlook
Further reading
Relevant websites
2.16. Phosphorescent metal complexes for biomedical applications
Content
Abstract
2.16.1 Introduction
2.16.2 Phosphorescent metal complexes for bioimaging
2.16.2.1 Advantages of phosphorescent metal complexes as bioimaging agents
2.16.2.2 Organelle imaging and tracking
2.16.2.2.1 Nucleus and nucleolus
2.16.2.2.2 Mitochondria
2.16.2.2.3 Lysosomes
2.16.2.2.4 Endoplasmic reticulum (ER) and Golgi apparatus
2.16.2.2.5 Cytoplasm
2.16.2.2.6 Other cell organelles
2.16.2.3 Cellular molecule labeling and cellular physical state detection
2.16.2.3.1 Metal ions
2.16.2.3.2 Intracellular oxygen and hypoxic environment
2.16.2.3.3 Intracellular redox small molecule
2.16.2.3.4 Intracellular biomacromolecule
2.16.2.4 Conclusion
2.16.3 Phosphorescent metal complexes for chemotherapy
2.16.3.1 Phosphorescence in chemotherapy
2.16.3.2 Phosphorescent ruthenium complexes as chemotherapeutic agents
2.16.3.3 Phosphorescent iridium complexes as chemotherapeutic agents
2.16.3.4 Other phosphorescent metal complexes as chemotherapeutic agent
2.16.4 Phosphorescent metal complexes for photodynamic therapy
2.16.4.1 Phosphorescent Ru(II) complexes for PDT
2.16.4.1.1 Elongating excited-state lifetime
2.16.4.1.2 Enhancing light-harvesting ability
2.16.4.1.3 Extending absorption profile to phototherapeutic window
2.16.4.1.4 Promoting performance in hypoxia
2.16.4.1.5 Imparting tumor targeting and uptake ability
2.16.4.1.6 Multimodal therapies for enhanced cancer therapy
2.16.4.2 Phosphorescent Ir(III) complexes for PDT
2.16.4.2.1 Promoting photophysical performance for PDT
2.16.4.2.2 Targeted PDT by Ir(III) complexes
2.16.4.2.3 Reinforcing phototherapeutic potency in hypoxia
2.16.4.2.4 Multimodal therapy
2.16.4.3 Other phosphorescent metal complexes/polymetallic complexes for PDT
References
2.17. Photoactive metallodrugs
Content
Abstract
2.17.1 Introduction
2.17.2 Phototherapy
2.17.2.1 Photodynamic therapy (PDT)
2.17.2.2 Photoactivated chemotherapy (PACT)
2.17.2.3 Photothermal therapy (PTT)
2.17.3 Photophysics and photochemistry of metallodrugs
2.17.3.1 Absorbance and luminescence
2.17.3.2 Activation wavelengths
2.17.3.2.1 One-photon activation
2.17.3.2.2 Multi-photon activation
2.17.3.3 Photoactivation mechanisms and pathways
2.17.3.3.1 Photocatalysis
2.17.3.3.2 Photoreduction
2.17.3.3.3 Photosubstitution
2.17.3.3.4 Photoactivation of ligands
2.17.3.3.5 Combinations of mechanisms
2.17.3.4 Photoreactions with biomolecules
2.17.3.4.1 Nucleotides and DNA
2.17.3.4.2 Amino acids, peptides and proteins
2.17.3.5 DFT and TD-DFT calculations
2.17.4 Photoactive anticancer metallodrugs
2.17.4.1 Photodynamic therapy (PDT)
2.17.4.1.1 PDT metallodrugs entered clinical trials
2.17.4.1.2 Candidate PDT metallodrugs
2.17.4.2 Photoactivated chemotherapy (PACT)
2.17.4.3 Photothermal therapy (PTT)
2.17.5 Photoactive antimicrobial metallodrugs
2.17.6 Drug delivery systems for photoactive metallodrugs
2.17.6.1 Organic nanocarriers
2.17.6.1.1 Natural polymeric nanocarriers
2.17.6.1.2 Synthetic polymeric nanocarriers
2.17.6.2 Inorganic nanocarriers
2.17.7 Summary and perspectives
Acknowledgments
References
2.18. Metallophores: How do human pathogens withdraw metal ions from the colonized host
Content
Abbreviations
Abstract
2.18.1 Introduction
2.18.1.1 Siderophores in the microbial battle for iron and their role in homeostasis of other metals
2.18.1.1.1 Environmental aspects of siderophore production
2.18.1.1.2 Siderophore transport systems
2.18.1.1.3 Implications of siderophores secretion for social relations
2.18.1.1.4 Interactions of siderophores with other metal ions
2.18.1.1.5 Metallophore biomimetics
2.18.1.1.6 Metal transport in vivo and lighting up metallophore–metal–metal transporter interactions and infection
2.18.1.2 Peptide/protein-based zincophores in the tug-of-war over zinc
2.18.1.2.1 Fungal zincophores
2.18.1.2.2 Bacterial zincophoresdSubstrate-binding proteins (SBPs)
2.18.2 Conclusions
Acknowledgments
References
2.19. The role of d-block metal ions in neurodegenerative diseases
Content
Abbreviations
Abstract
2.19.1 Introduction
2.19.2 Prion diseases
2.19.2.1 The prion protein
2.19.2.1.1 Copper binding to prion protein and its biological implications
2.19.2.1.2 Zinc binding to prion protein and its biological implications
2.19.2.1.3 Manganese binding to prion protein and its biological implications
2.19.2.1.4 Proteolytic processing of cellular prion protein and its in metal-binding properties
2.19.2.1.5 Metal ions and aggregation of the prion protein
2.19.2.1.6 Metal ions as a therapeutic target in prion diseases
2.19.3 Alzheimer’s disease
2.19.3.1 The amyloid precursor protein
2.19.3.1.1 Copper binding to the amyloid precursor protein and its biological implications
2.19.3.1.2 Zinc binding properties to the amyloid precursor protein and its biological implications
2.19.3.1.3 Metal ions and the proteolytic processing of amyloid precursor protein
2.19.3.2 The amyloid-b peptide
2.19.3.2.1 Copper binding properties to the amyloid-β peptide and its biological implications
2.19.3.2.2 Zinc binding properties to the amyloid-β peptide and its
2.19.3.2.3 Iron binding to the amyloid-β peptide and its biological
2.19.3.2.4 N-truncation of amyloid-β and its impact in metal-binding
2.19.3.2.5 Aβ (4-x) and Aβ (11-x) fragments
2.19.3.2.6 Aβ (p3-x) and Aβ (p11-x) fragments
2.19.3.2.7 Metal ions and Aβ aggregation and its pathological implications
2.19.3.3 The tau protein
2.19.3.3.1 Copper-binding properties of tau protein and its biological implications
2.19.3.3.2 Zinc-binding properties of tau protein, aggregation, and toxicity
2.19.3.3.3 Iron and tau hyperphosphorylation
2.19.3.3.4 Metal ions and tau kinases
2.19.3.4 The prion protein in Alzheimer’s disease
2.19.3.5 Metal ions as therapeutic target for Alzheimer’s disease
2.19.4 Parkinson’s disease
2.19.4.1 DJ-1 protein
2.19.4.1.1 Metal-binding properties of DJ-1 protein
2.19.4.2 α-Synuclein
2.19.4.2.1 Calcium-binding properties of α-synuclein and its biological implications
2.19.4.2.2 Iron-binding properties of α-synuclein and its biological implications
2.19.4.2.3 Copper-binding properties of α-synuclein and its biological implications
2.19.4.2.4 Posttranslational modification α-synuclein and its metal-binding properties
2.19.4.3 Metal ions as therapeutic targets in Parkinson’s disease
2.19.5 Huntington’s disease
2.19.5.1 Copper in Huntington’s disease
2.19.5.2 Iron in Huntington’s disease
2.19.5.3 Manganese in Huntington’s disease
2.19.5.4 Zinc in Huntington’s disease
2.19.5.5 Metal ions as therapeutic targets in Huntington’s disease
2.19.6 Concluding remarks
Acknowledgements
References
2.20. Metal ion interactions with nucleic acids
Content
Nomenclature
2.20.1 Introduction
2.20.2 General considerations
2.20.2.1 Relevant metal ions and some of their properties
2.20.2.2 Potential liganding atoms on RNA
2.20.2.2.1 Acid-base considerations on potential binding sites
2.20.2.2.2 Micro acidity constants, intrinsic basicities, and tautomeric equilibria
2.20.3 Metal ion affinities of individual sites of single-stranded nucleic acids
2.20.4 Metal ion binding to RNAs
2.20.4.1 Solvation content of metal ions
2.20.4.2 Thermodynamics of metal ion binding to RNA
2.20.4.2.1 Indirect methods
2.20.4.2.2 Hydrolytic cleavage experiments
2.20.4.2.3 Oxidative cleavage experiments
2.20.4.2.4 Spectroscopic methods
2.20.4.3 Metal ion binding motifs in RNA by Mg2+
2.20.4.3.1 Classification of Mg2+ binding sites
2.20.4.3.2 Tandem GC base pairs
2.20.4.3.3 GU wobble pairs
2.20.4.3.4 GA mismatch base pair
2.20.4.3.5 Sheared GA base pair
2.20.4.3.6 Loop E motive or metal ion zipper
2.20.4.3.7 Mg2+ clamp
2.20.4.3.8 Y-clamp
2.20.4.3.9 G-N7 macrochelation and purine N7-seat
2.20.4.3.10 Further Mg2+binding motifs
2.20.4.4 Metal ion binding motifs in RNA of monovalent metal ions
2.20.4.4.1 GU wobble
2.20.4.4.2 AA platform
2.20.4.4.3 GG stacking
2.20.4.4.4 Nucleobase tetrads
2.20.4.5 Binding of kinetically inert metal ions
2.20.4.5.1 Binding of Pt2+ to RNA
2.20.4.5.2 Binding of other inert metal ions
2.20.4.6 Metal ion binding in the helix center
2.20.4.7 Binding of metal ion complexes
2.20.4.7.1 Hexammine complexes with Co3+ and other metal ions
2.20.4.7.2 Ruthenium complexes
2.20.4.7.3 Further complexes
2.20.5 Metal ions and their role in folding and dynamics of RNA
2.20.6 Metal-ion sensing by riboswitches
2.20.7 Metal ions and their role in RNA catalysis
2.20.7.1 General effects of metal ions on the observed catalytic rat
2.20.7.2 Two-metal ion mechanism
2.20.7.3 Electrostatic influence of metal ions
2.20.8 Concluding remarks and future directions
Acknowledgments
References
2.21. Metal-mediated base pairs in nucleic acid duplexes
Content
Abstract
2.21.1 Introduction
2.21.1.1 Nucleic acids and metal ions in general
2.21.1.2 What are metal-mediated base pairs?
2.21.1.3 Early metal-mediated base pairs
2.21.2 Overview of ligands reported in metal-mediated base pairing
2.21.2.1 Pyrimidine and its derivatives
2.21.2.1.1 (Functionalized) thymine or uracil
2.21.2.1.2 (Functionalized) cytosine
2.21.2.2 Purine and its derivatives
2.21.2.2.1 (Functionalized) adenine
2.21.2.2.2 (Functionalized) guanine
2.21.2.2.3 Other purine derivatives
2.21.2.3 Artificial nucleobases
2.21.2.4 Structures of oligonucleotides bearing metal-mediated base pairs
2.21.2.4.1 Metal-mediated base pairs involving canonical nucleobases
2.21.2.4.2 Nucleic acids involving artificial nucleosides
2.21.3 Summary and outlook
References
2.22. Supramolecular metal-based molecules and materials for biomedical applications
Content
Abstract
2.22.1 Introduction
2.22.2 Supramolecular coordination complexes (SCCs)
2.22.2.1 Synthesis
2.22.2.2 Synthesis of helicates
2.22.3 Biomedical applications of SCCs
2.22.3.1 Anticancer therapy
2.22.3.2 Drug delivery
2.22.3.3 Imaging
2.22.4 Synthesis of metal-organic frameworks (MOFs)
2.22.5 Biomedical applications of MOFs
2.22.5.1 Drug delivery
2.22.5.2 Imaging
2.22.5.3 Combined therapy and theranostics
2.22.6 Conclusions and perspectives
References
2.23. Metal complexes as chemotherapeutic agents
Content
Abstract
2.23.1 Introduction
2.23.2 Platinum(II) complexes as anticancer agents
2.23.2.1 Conventional platinum(II) complexes
2.23.2.1.1 Clinically used anticancer agents
2.23.2.2 Unconventional platinum(II) complexes
2.23.2.2.1 Multi-nuclear platinum complexes
2.23.2.2.2 G-quadruplex targeted
2.23.2.2.3 Cancer stem cell targeted
2.23.2.2.4 Monofunctional complexes
2.23.2.2.5 Non-conventional mechanism of action
2.23.2.2.6 Immunogenic cell death stimulators
2.23.2.2.7 Non-covalent mechanism of action
2.23.3 Platinum(IV) prodrugs as anticancer agents
2.23.3.1 Clinically trialed prodrugs
2.23.3.2 Multi-action prodrugs
2.23.3.2.1 Histone deacetylase inhibition
2.23.3.2.2 Cyclooxygenase inhibition
2.23.3.2.3 Pyruvate dehydrogenase kinase inhibition
2.23.3.2.4 Glutathione S-transferase inhibition
2.23.3.2.5 Tumor microenvironment regulators
2.23.3.2.6 Immunostimulators
2.23.3.2.7 Cancer stem cell targeted
2.23.3.2.8 DNA damage response disrupters
2.23.3.2.9 Prodrugs with unconventional cytotoxic cores
2.23.3.3 Photoactivatable prodrugs
2.23.3.4 Challenges and future perspectives of platinum chemotherapeutics
2.23.4 NON-platinum anticancer agents
2.23.4.1 Ruthenium complexes
2.23.4.2 Gold complexes
2.23.5 Conclusions
References
2.24. Protein targets for anticancer metal based drugs
Content
Abstract
2.24.1 Anticancer metal-based drugs: An overview
2.24.2 Mechanistic aspects: Proteins as alternative targets for anticancer metal-based drugs
2.24.3 The metalation process of individual proteins: a hyphenated ESI-MS/XRD investigative protocol for adducts characterization
2.24.4 Proteins as targets for anticancer metal-based drugs: Auranofin and thioredoxin reductase
2.24.5 Emerging technologies for target identification in metallodrugs’ research
2.24.5.1 A chemical proteomics approach to disclose the protein targets for the ruthenium complex RAPTA
2.24.5.2 Metallomics studies disclose the main Bismuth Binding Proteins in bacteria
2.24.6 Conclusions
Funding
References
2.25. Platinum anticancer drugs: Targeting and delivery
Content
Abstract
2.25.1 Introduction of platinum anticancer drugs
2.25.1.1 Platinum(II) anticancer drugs
2.25.1.1.1 The development of platinum(II) drugs
2.25.1.1.2 The action mechanism of platinum(II) drugs
2.25.1.1.3 The limitations of Pt(II) drugs
2.25.1.2 Novel platinum complexes
2.25.1.2.1 Non-conventional platinum(II) anticancer complexes
2.25.1.2.2 Platinum(IV) prodrugs
2.25.2 Tumor-targeted platinum complexes
2.25.2.1 Tumor-targeted small molecule-platinum conjugates
2.25.2.1.1 Estrogen-platinum conjugates targeting estrogen receptors
2.25.2.1.2 Glucose-platinum conjugates targeting glucose transporters
2.25.2.1.3 Folate-platinum conjugates targeting folate receptors
2.25.2.1.4 Biotin-platinum conjugates targeting SMVT
2.25.2.1.5 Phosphonate-platinum conjugate targeting bone cancers
2.25.2.2 Tumor-targeted platinum-peptide conjugates
2.25.2.2.1 RGD-platinum conjugates targeting integrin
2.25.2.2.2 NGR-platinum conjugates targeting aminopeptidase N (APN)
2.25.2.2.3 TPP-platinum conjugates targeting memHSP70
2.25.2.2.4 CTX-platinum conjugates targeting chlorotoxin receptors
2.25.2.2.5 EGFR peptide-platinum conjugates targeting EGFR
2.25.2.2.6 AHNP-platinum conjugates targeting HER2
2.25.2.3 Delivery of platinum drugs by proteins
2.25.2.3.1 Delivery of platinum drugs by albumin
2.25.2.3.2 Delivery of platinum drugs by antibodies
2.25.3 Organelle-targeted platinum complexes
2.25.3.1 Nucleus-targeted Pt complexes
2.25.3.2 Mitochondria-targeted Pt complexes
2.25.3.3 ER-targeted Pt complexes
2.25.3.4 Lysosome-targeted Pt complexes
2.25.4 Platinum drug-based nano-delivery systems
2.25.4.1 Platinum-incorporated nano-systems
2.25.4.2 Platinum-self-assembled nano-systems
2.25.4.3 Platinum-conjugated nano-systems
2.25.5 Conclusions and perspectives
References
2.26. Anti-cancer gold compounds
Content
Abstract
2.26.1 Introduction
2.26.2 Anti-arthritic gold(I) drugs with anti-cancer activities
2.26.3 Anti-cancer gold(I) complexes
2.26.3.1 Gold(I)-phosphine complexes
2.26.3.1.1 Coordination of N-heterocyclic carbene ligand(s)
2.26.3.2 Gold(I)-NHC complexes
2.26.3.3 Gold(I)-thiourea complexes
2.26.3.4 Gold(I)-alkynyl complexes
2.26.3.5 Gold(I)-dithiocarbamate complexes
2.26.4 Anti-cancer gold(III) complexes
2.26.4.1 Gold(III) porphyrins
2.26.4.2 Pincer-type gold(III) complexes
2.26.4.3 Gold(III) complexes with the coordination of various π-conjugated aromatic ligands
2.26.4.4 Bidentate N^N-type gold(III) complexes
2.26.4.5 Bidentate C^N-type gold(III) complexes
2.26.4.6 Gold(III)-dithiocarbamate complexes
2.26.5 Formulations of gold complexes with improved anti-cancer potency
2.26.5.1 Gold(I) complexes
2.26.5.2 Gold(III) complexes
2.26.6 Conclusion
Acknowledgment
References