Computer Vision for X-Ray Testing: Imaging, Systems, Image Databases, and Algorithms

دانلود کتاب Computer Vision for X-Ray Testing: Imaging, Systems, Image Databases, and Algorithms

59000 تومان موجود

کتاب بینایی کامپیوتر برای آزمایش اشعه ایکس: تصویربرداری، سیستم‌ها، پایگاه‌های داده تصویر و الگوریتم‌ها نسخه زبان اصلی

دانلود کتاب بینایی کامپیوتر برای آزمایش اشعه ایکس: تصویربرداری، سیستم‌ها، پایگاه‌های داده تصویر و الگوریتم‌ها بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 3


توضیحاتی در مورد کتاب Computer Vision for X-Ray Testing: Imaging, Systems, Image Databases, and Algorithms

نام کتاب : Computer Vision for X-Ray Testing: Imaging, Systems, Image Databases, and Algorithms
ویرایش : 2nd ed. 2021
عنوان ترجمه شده به فارسی : بینایی کامپیوتر برای آزمایش اشعه ایکس: تصویربرداری، سیستم‌ها، پایگاه‌های داده تصویر و الگوریتم‌ها
سری :
نویسندگان : ,
ناشر : Springer
سال نشر : 2020
تعداد صفحات : 473
ISBN (شابک) : 3030567680 , 9783030567682
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 11 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Foreword to the Second Edition
Foreword to the First Edition
Preface to the Second Edition
Preface to the First Edition
Acknowledgements
Contents
About the Authors
1 X-ray Testing
1.1 Introduction
1.2 History
1.3 Physics of the X-rays
1.3.1 Formation of X-rays
1.3.2 Scattering and Absorption of X-rays
1.4 X-ray Testing System
1.4.1 X-ray Source
1.4.2 Manipulator
1.4.3 Image Intensifier
1.4.4 CCD-Camera
1.4.5 Flat Panel
1.4.6 Computer
1.5 X-ray Imaging
1.5.1 X-ray Image Formation
1.5.2 Image Acquisition
1.5.3 X-ray Image Visualization
1.5.4 Dual-Energy
1.6 Computer Vision
1.6.1 Geometric Model
1.6.2 Single View Analysis
1.6.3 Multiple View Analysis
1.6.4 Deep Learning
1.6.5 Computed Tomography
1.7 Code and Data
1.7.1 Pyxvis Library
1.7.2 mathbbGDXray+ Database
1.8 General Methodology for X-ray Testing
1.9 Summary
References
2 Images for X-ray Testing
2.1 Introduction
2.2 Structure of the Database
2.3 Castings
2.4 Welds
2.5 Baggage
2.6 Natural Objects
2.7 Settings
2.8 Python Commands
2.9 Summary
References
3 Geometry in X-ray Testing
3.1 Introduction
3.2 Geometric Transformations
3.2.1 Homogeneous Coordinates
3.2.2 2D rightarrow 2D Transformation
3.2.3 3D rightarrow 3D Transformation
3.2.4 3D rightarrow 2D Transformation
3.3 Geometric Model of an X-ray Computer Vision System
3.3.1 A General Model
3.3.2 Geometric Models of the Computer Vision System
3.3.3 Explicit Geometric Model Using an Image Intensifier
3.3.4 Multiple View Model
3.4 Calibration
3.4.1 Calibration Using Python
3.4.2 Experiments of Calibration
3.5 Geometric Correspondence in Multiple Views
3.5.1 Correspondence Between Two Views
3.5.2 Correspondence Between Three Views
3.5.3 Correspondence Between Four Views or More
3.6 Three-Dimensional Reconstruction
3.6.1 Linear 3D Reconstruction from Two Views
3.6.2 3D Reconstruction from Two or More Views
3.7 Summary
References
4 X-Ray Image Processing
4.1 Introduction
4.2 Image Preprocessing
4.2.1 Noise Removal
4.2.2 Contrast Enhancement
4.2.3 Shading Correction
4.3 Image Filtering
4.3.1 Linear Filtering
4.3.2 Non-linear Filtering
4.4 Edge Detection
4.4.1 Gradient Estimation
4.4.2 Laplacian-of-Gaussian (LoG)
4.4.3 Canny Edge Detector
4.5 Segmentation
4.5.1 Thresholding
4.5.2 Region Growing
4.5.3 Maximally Stable Extremal Regions (MSER)
4.6 Image Restoration
4.7 Summary
References
5 X-ray Image Representation
5.1 Introduction
5.2 Geometric Features
5.2.1 Basic Geometric Features
5.2.2 Elliptical Features
5.2.3 Fourier Descriptors
5.2.4 Invariant Moments
5.3 Intensity Features
5.3.1 Basic Intensity Features
5.3.2 Contrast
5.3.3 Crossing Line Profiles
5.3.4 Intensity Moments
5.3.5 Statistical Textures
5.3.6 Gabor
5.3.7 Filter Banks
5.4 Descriptors
5.4.1 Local Binary Patterns
5.4.2 Binarized Statistical Image Features (BSIF)
5.4.3 Histogram of Oriented Gradients
5.4.4 Scale-Invariant Feature Transform (SIFT)
5.5 Sparse Representations
5.5.1 Traditional Dictionaries
5.5.2 Sparse Dictionaries
5.5.3 Dictionary Learning
5.6 Feature Selection
5.6.1 Basics
5.6.2 Exhaustive Search
5.6.3 Branch and Bound
5.6.4 Sequential Forward Selection
5.6.5 Sequential Backward Selection
5.6.6 Ranking by Class Separability Criteria
5.6.7 Forward Orthogonal Search
5.6.8 Least Square Estimation
5.6.9 Combination with Principal Components
5.6.10 Feature Selection Based in Mutual Information
5.7 A Final Example
5.8 Summary
References
6 Classification in X-Ray Testing
6.1 Introduction
6.2 Classifiers
6.2.1 Minimal Distance
6.2.2 Mahalanobis Distance
6.2.3 Bayes
6.2.4 Linear Discriminant Analysis
6.2.5 Quadratic Discriminant Analysis
6.2.6 K-Nearest Neighbors
6.2.7 Neural Networks
6.2.8 Support Vector Machines
6.2.9 Classification Using Sparse Representations
6.3 Performance Evaluation
6.3.1 Hold-Out
6.3.2 Cross-Validation
6.3.3 Leave-One-Out
6.3.4 Confusion Matrix
6.3.5 ROC and Precision-Recall Curves
6.4 Classifier Selection
6.5 Summary
References
7 Deep Learning in X-ray Testing
7.1 Introduction
7.2 Neural Networks
7.2.1 Basics of Neural Networks
7.2.2 Training of Neural Networks
7.2.3 Examples of Neural Networks
7.3 Convolutional Neural Network (CNN)
7.3.1 Basics of CNN
7.3.2 Learning in CNN
7.3.3 Testing in CNN
7.3.4 Example of CNN
7.4 Pre-trained Models
7.4.1 Basics of Pre-trained Models
7.4.2 Example of Pre-trained Models
7.5 Transfer Learning
7.5.1 Basics of Transfer Learning
7.5.2 Training in Transfer Learning
7.5.3 Example of Transfer Learning
7.6 Generative Adversarial Networks (GANs)
7.6.1 Basics of GAN
7.6.2 Training of GAN
7.6.3 Implementation of GAN
7.6.4 Example of GAN
7.7 Detection Methods
7.7.1 Basics of Object Detection
7.7.2 Region Based Methods
7.7.3 YOLO
7.7.4 SSD
7.7.5 RetinaNet
7.7.6 Examples of Object Detection
7.8 Summary
References
8 Simulation in X-ray Testing
8.1 Introduction
8.2 Modeling
8.2.1 Geometric Model
8.2.2 X-ray Imaging
8.3 Basic General Simulation
8.4 Flaw Simulation
8.4.1 Mask Superimposition
8.4.2 CAD Models for Object and Defect
8.4.3 CAD Models for Defects Only
8.5 Superimposition Using Multiplication of Images
8.6 Simulation of X-ray Images Using GAN
8.7 Simulation with aRTist
8.8 Summary
References
9 Applications in X-ray Testing
9.1 Introduction
9.2 Castings
9.2.1 State of the Art
9.2.2 An Application
9.2.3 An Example
9.3 Welds
9.3.1 State of the Art
9.3.2 An Application
9.3.3 An Example
9.4 Baggage
9.4.1 State of the Art
9.4.2 An Application
9.4.3 An Example Using Multiple Views
9.4.4 Example Using Deep Learning
9.5 Natural Products
9.5.1 State of the Art
9.5.2 An Application
9.5.3 An Example
9.6 Further Applications
9.6.1 Cargo Inspection
9.6.2 Electronic Circuits
9.7 Summary
References
Appendix A mathbbGDXray+ Database
Index




پست ها تصادفی