توضیحاتی در مورد کتاب Condensed Matter Physics: A Modern Perspective
نام کتاب : Condensed Matter Physics: A Modern Perspective
عنوان ترجمه شده به فارسی : فیزیک ماده متراکم: دیدگاه مدرن
سری :
نویسندگان : Saurabh Basu
ناشر : IOP Publishing
سال نشر : 2022
تعداد صفحات : 380
ISBN (شابک) : 9780750330312 , 9780750330305
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 11 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Title
Copyright
Contents
Preface
Foreword
Acknowledgement
Author biography
1 Electron liquid
1.1 Introduction
1.2 Jellium model
1.2.1 The Hamiltonian
1.2.2 Hartree–Fock approximation
1.2.3 Hartree–Fock energy
1.3 Properties of the electron liquid
1.3.1 Effective mass
1.3.2 Magnetic properties
1.3.3 Screening and dielectric function
1.3.4 Conductivity
1.4 Determination of the Fermi surface: the de Haas–Van Alphen effect
1.5 Fermi liquid theory
1.6 Summary and outlook
References
2 Magnetic phenomena in solids
2.1 Introduction
2.2 Magnetic ordering: diamagnetism and paramagnetism
2.3 Magnetic properties of filled and partially filled shell materials
2.4 Ferromagnetism and antiferromagnetism
2.5 Mean field theory
2.6 Linear spin wave theory
2.6.1 Quantum XY model
2.7 Ising model of ferromagnetism: transfer matrix
2.8 Critical exponent and the universality class
2.9 Quantum antiferromagnet
2.10 Itinerant electron magnetism
2.11 Magnetic susceptibility: Kubo formula
2.12 Hubbard model: an introduction
2.13 Symmetries of the Hubbard model
2.13.1 Spin-rotational invariance
2.13.2 Particle–hole symmetry
2.13.3 Extreme limits of the Hubbard model
2.14 Ferromagnetism in Hubbard model: Stoner criterion
2.15 Antiferromagnetism in the Hubbard model
2.15.1 Strong coupling limit
2.15.2 Summary and outlook
2.16 Appendix
2.17 RS coupling
2.18 jj Coupling
2.19 Hund’s rule
References
3 Transport in electronic systems
3.1 Introduction
3.2 Quantum Hall effect
3.2.1 General perspectives
3.2.2 Translationally invariant system: classical limit of QHE
3.2.3 Charge particles in a magnetic field: Landau levels
3.2.4 Degeneracy of the Landau levels
3.2.5 Conductivity of the Landau levels: role of the edge modes
3.2.6 Spin and the electric field
3.2.7 Laughlin’s argument: Corbino ring
3.2.8 Edge modes and conductivity of the single Landau level
3.2.9 Incompressibility and the QH states
3.2.10 Hall effect in the symmetric gauge
3.3 Kubo formula and the Hall conductivity
3.3.1 Hall conductivity and the Chern number
3.4 Quantum Hall effect in graphene
3.4.1 Basic electronic properties of graphene
3.4.2 Experimental confirmation of the Dirac spectrum
3.4.3 Landau levels in graphene
3.4.4 Experimental observation of the Landau levels in graphene
3.4.5 Summary
References
4 Symmetry and topology
4.1 Introduction
4.1.1 Gauss–Bonnet theorem
4.1.2 Berry phase
4.2 Symmetries and topology
4.2.1 Inversion symmetry
4.2.2 Time reversal symmetry
4.3 SSH model
4.3.1 Introduction
4.4 The SSH Hamiltonian
4.4.1 Topological properties
4.4.2 Chiral symmetry
4.5 Topology in 2D: graphene as a topological insulator
4.5.1 Berry phase of graphene
4.5.2 Symmetries of graphene
4.5.3 Semenoff insulator
4.5.4 Haldane (Chern) insulator
4.5.5 Quantum anomalous Hall effect
4.6 Quantum spin Hall insulator
4.6.1 Kane–Mele model
4.7 Bulk-boundary correspondence
4.8 Spin Hall conductivity
4.8.1 Rashba spin–orbit coupling
4.8.2 Rashba spin–orbit coupling in graphene
4.8.3 Z2 invariant
4.9 Spin Hall effect
4.9.1 Spin current
4.9.2 Summary and outlook
References
5 Green’s functions
5.1 Introduction
5.2 Second quantization
5.2.1 Fock basis
5.2.2 Representation of a one-body operator in second quantized notation
5.2.3 Representation of a two-body operator
5.2.4 Applications of the second quantized method
5.3 Green’s function
5.3.1 Green’s function for a single particle
5.3.2 Green’s function for a many-particle system
5.3.3 Representations in quantum mechanics
5.3.4 Electron Green’s function at zero temperature
5.3.5 Example: a degenerate electron gas
5.4 Retarded and advanced Green’s functions
5.4.1 Spectral representation
5.4.2 Wick’s theorem and Feynman diagrams
5.5 Self-energy: Dyson equation
5.5.1 Self-energy for a two-site chain: an example
5.5.2 Hartree–Fock approximation
5.6 Finite temperature Green’s function
5.6.1 Properties of the Matsubara Green’s function
5.6.2 Matsubara Green’s function and the retarded propagator at T = 0
5.6.3 Matsubara frequency sums
5.7 Summary and outlook
References
6 Superconductivity
6.1 Introduction
6.1.1 Historical developments
6.1.2 Physical properties
6.1.3 Meissner effect
6.1.4 Perfect conductors and superconductors
6.1.5 Electrodynamics of superconductors: London theory
6.1.6 Penetration depth
6.1.7 Flux quantization
6.1.8 Non-local electrodynamics
6.2 Magnetic phase diagram of superconductors
6.2.1 Thermodynamics of superconductors
6.2.2 Specific heat
6.2.3 Density of states
6.3 BCS theory
6.3.1 Introduction
6.3.2 Isotope effect
6.3.3 Origin of attractive interaction
6.3.4 The BCS ground state
6.3.5 Statistical description of the BCS ground state
6.4 The variational calculation
6.4.1 Temperature dependence of the gap
6.4.2 Thermodynamics from BCS theory
6.5 Electromagnetic considerations
6.5.1 Meissner effect
6.5.2 Electromagnetic response in the transverse gauge
6.6 Ginzburg–Landau (GL) theory
6.6.1 Coherence length and the penetration depth
6.7 Experimental determination of energy gap
6.7.1 Absorption of electromagnetic radiation
6.7.2 Ultrasound absorption
6.7.3 Tunneling experiment
6.7.4 Unconventional superconductivity
6.7.5 High-Tc cuprates
6.8 The pseudogap phase
6.8.1 Summary and outlook
References
7 Superfluidity
7.1 Introduction
7.2 Bose–Einstein condensation
7.3 Superfluidity
7.3.1 Gross–Pitaevskii equation
7.3.2 Quantized vortices
7.4 Many-body physics with cold atomic systems
7.4.1 BEC in weakly interacting systems
7.5 Strongly correlated systems
7.5.1 Optical lattice
7.5.2 Atom–atom interaction: Feshbach resonance
7.5.3 Ultracold atoms on optical lattice and Bose–Hubbard model
7.6 Various aspects of ultracold atoms in optical lattices
7.6.1 Disorder optical potential
7.6.2 Synthetic magnetic field
7.6.3 Dipole–dipole interaction
7.6.4 Bose glass phase
7.6.5 Methods of solution of the BHM
7.6.6 Single-site MFT
7.6.7 Superfluid–Mott insulator (SF–MI) transition
7.6.8 Limitations of MFT
7.6.9 Optical dipole trap (ODT)
7.6.10 Spin-1 Bose gas: an era of quantum magnetism
7.6.11 A comparison between spin-0 (spinless) and spin-1 Bose gases
7.6.12 Phase diagrams
7.7 Summary and outlook
7.8 Appendix
7.8.1 Derivation of the Gross–Pitaevskii equation
References