توضیحاتی در مورد کتاب Control and Filter Design of Single-Phase Grid-Connected Converters
نام کتاب : Control and Filter Design of Single-Phase Grid-Connected Converters
ویرایش : 1 ed.
عنوان ترجمه شده به فارسی : کنترل و طراحی فیلتر مبدل های تک فاز متصل به شبکه
سری :
نویسندگان : Weimin Wu, Frede Blaabjerg, Henry Chung, Yuanbin He, and Min Huang
ناشر : IEEE Press
سال نشر : 2023
تعداد صفحات : 272
[269]
ISBN (شابک) : 2022046741 , 9781119886570
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 26 Mb
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover
Title Page
Copyright Page
Contents
Author Biography
Preface
Part I Background
Chapter 1 Introduction
1.1 Architecture of DG Grid-Connected Converter
1.1.1 Power Conversion Stage
1.1.1.1 Switching Network
1.1.1.2 Output Filter
1.1.2 Control Stage
1.2 Challenges for Controlling DG Grid-Connected VSCs with High-Order Power Filter
1.2.1 Intrinsic Challenges
1.2.1.1 Filter Parametric Sensitivities
1.2.1.2 Digital Delay
1.2.2 Extrinsic Challenges
1.2.2.1 Grid Impedance Variation
1.2.2.2 Disturbances at the PCC
1.3 Methods for Controlling DG Grid-Connected VSCs with High-Order Power Filter
1.3.1 Methodologies to Assess the Stability of DG Grid-Connected VSCs
1.3.1.1 Eigenvalue-Based Analysis
1.3.1.2 Impedance-Based Stability Analysis
1.3.1.3 Application Issue Related to Impedance-Based Stability Analysis
1.3.2 Methods to Mitigate Filter Resonance
1.3.2.1 Online Grid Impedance Estimation
1.3.2.2 Inherent Damping
1.3.2.3 Passive Damping
1.3.2.4 Active Damping
1.3.2.5 Hybrid Damping
1.3.3 Harmonic distortion Mitigation Methods
1.4 Supplementary Note
References
Chapter 2 Control Structure and Modulation Techniques of Single-Phase Grid-Connected Inverter
2.1 Control Structure of Single-Phase Grid-Connected Inverter
2.1.1 Natural Frame Control
2.1.2 Synchronous Reference Frame Control
2.1.3 Grid Synchronization Methods
2.1.3.1 Zero-Crossing Method
2.1.3.2 Filtering of Grid Voltages
2.1.3.3 PLL Technique
2.2 Modulation Methods
2.2.1 Unipolar Modulation Method
2.2.1.1 Continuous Unipolar Modulation
2.2.1.2 Discontinuous Unipolar Modulation
2.2.2 Bipolar Modulation Method
2.3 Summary
References
Part II LCL/LLCL Power Filter
Chapter 3 An LLCL Power Filter for Single-Phase Grid-Connected Inverter
3.1 Introduction
3.2 Principle of Traditional LCL Filter and Proposed LLCL Filter
3.3 Parametric Design of LCL and LLCL Filters
3.3.1 Constraints and Procedure of Power Filter Design
3.3.2 Saving Analysis on the Grid-Side Inductance
3.3.3 Specific Design Consideration for a Simple Passive Damping Strategy
3.4 Design Examples for LCL and LLCL filters
3.5 Experimental Results
3.5.1 Experimental Results
3.5.2 Analysis and Discussion
3.6 Summary
References
Chapter 4 Modeling and Suppressing Conducted Electromagnetic Interference Noise for LCL/LLCL-Filtered Single-Phase Transformerless Grid-Connected Inverter
4.1 Introduction
4.2 Conducted EMI Noise Analysis
4.2.1 CM and DM Voltage Noises
4.2.2 Spectrum of DM and CM Voltage Noise for GCI Using DUPWM
4.2.3 Spectrum of DM Voltage Noise for GCI Using BPWM
4.3 Modified LLCL Filter to Fully Suppress the Conducted EMI Noise for GCI Using DUPWM
4.3.1 Modified Solution for LLCL Filter
4.3.2 Improved Parameter Design of LLCL filter
4.3.3 Constraints on Harmonics of the Grid-Injected Current and EMI Noise Within 150 kHz to 1 MHz
4.3.3.1 Constraints on Leakage Current
4.3.4 Experimental Verification
4.3.4.1 Power Spectrum of the Grid-Injected Current
4.3.4.2 Measured Conducted EMI Noise
4.3.5 Negative DC-Rail Voltage with Respect to the Earth vdc_N and Leakage Current
4.4 Novel DM EMI Suppressor for LLCL-Filtered GCI without CM Noise Issue
4.4.1 Proposed DM EMI Suppressor
4.4.2 Experimental Verification
4.5 Summary
4.5.1 For Single-Phase Transformerless GCI Using DUPWM
4.5.2 For Single-Phase Transformerless GCI Using BPWM or a System Without CM EMI Noise Issue
References
Part III Passive Damping
Chapter 5 Design of Passive Damper for LCL/LLCL-Filtered Grid-Connected Inverter
5.1 Introduction
5.2 Design Method for Passive Damping
5.2.1 Passive Damping Scheme of LCL Filter
5.2.2 Passive Damping Scheme of LLCL Filter
5.2.3 Design Example
5.3 Analysis of Power Loss Caused by the Filter
5.3.1 Passive Damping Power Loss
5.3.2 Power Losses in Inductors
5.4 Experimental Results
5.5 Summary
References
Chapter 6 Composite Passive Damping Scheme for LLCL-Filtered Grid-Connected Inverter
6.1 Introduction
6.2 Upper and Lower Limits of the PR + HC Controller Gain
6.2.1 LLCL Filter-Based Grid-Connected Inverter Configuration
6.2.2 Lower Limit of the PR + HC Controller Gain
6.2.3 Upper Limit of the PR + HC Controller Gain
6.3 E-Q-Factor-Based Passive Damping Design
6.3.1 Principle of the Equivalent Q-Factor Method
6.3.2 E-Q-Factor-Based RC Parallel Damping Design
6.3.3 E-Q-Factor-Based RL Series Damping Design
6.4 New Composite Passive Damping Scheme for the LLCL Filter
6.4.1 Composite Passive Damping Scheme
6.4.2 Design Example
6.4.3 Analysis of Achieved Damping
6.5 Experimental Verification
6.6 Summary
References
Part IV Robust Control Design
Chapter 7 Robust Hybrid Damper Design for LCL/LLCL-Filtered Grid-Connected Inverter
7.1 Introduction
7.2 Control Bandwidth Analysis of the Grid-Current Feedback Method
7.2.1 LCL/LLCL-Filtered Grid-Connected Inverter System
7.2.2 Maximum Achieved Bandwidth of the Control Method
7.3 Proposed Single-Loop Control with High Bandwidth
7.3.1 Mathematical Model of the Proposed Single-Loop Control with Hybrid Damper
7.3.2 System-Characteristics-Based Single-Loop Control Design Methodology
Step 1: Design of the RC Parallel Damper
Step 2: Design of the Proportionality Coefficient Kp of the PR + HC Regulator
Step 3: Determination of the Critical Grid Inductance
Step 4: Determination of the Critical Frequency Region for Case 1 and the Critical Frequency (f0 of Case 1 and fL0 of Case 2)
Step 5: Design of the Digital Notch Filter
Step 6: Checking the Phase Margin of the Entire System
7.4 Design Example
7.4.1 System Design
7.4.2 System Parameter Robustness Analysis
7.5 Experimental Verification
7.6 Summary
References
Chapter 8 Robust Impedance-Based Design of LLCL-Filtered Grid-Connected Inverter against the Wide Variation of Grid Reactance
8.1 Introduction
8.2 Modeling of the LLCL-Type Grid-Connected Inverter
8.2.1 System Description
8.2.2 Norton Equivalent Model
8.3 Stability Analysis Considering Grid-Reactance Variation
8.3.1 Non-Passive Regions of Inverter Output Admittance
8.3.2 Possible Instability Under the Wide Variation of Grid Reactance
8.4 Proposed Measures and Design Procedure Under the Grid-Reactance Variation Condition
8.4.1 Proposed Measures Against Grid-Reactance Variation
8.4.2 Design Procedure
Step 1- Calculate the Minimum Grid Inductance Lg_min
Step 2- Design L1, Ctotal, and L2
Step 3- Design the Bypass Filtering Branch
Step 4- Design the Minimum Grid Capacitance Cg_min
Step 5- Design the Proportional Gain KP of the PR+HC Regulator
Step 6- Select CEMI, Cd, and Rd
Step 7- Check fi < fd2
8.5 Design Example
8.6 Simulation and Experimental Verification
8.6.1 Simulation
8.6.2 Experiments
8.6.2.1 Experimental Results
8.6.2.2 Analysis and Discussion
8.7 Summary
References
Part V Active Damping
Chapter 9 Active Damping of LLCL-Filter Resonance Based on LC-Trap Voltage or Current Feedback
9.1 Introduction
9.2 Control of LLCL-Filtered Grid Converter
9.2.1 Description and General Control
9.2.2 Block Diagrams of Different Active Dampers
9.2.3 Effects of Delay Gd(s)
9.3 Circuit Equivalences of LLCL Active Dampers
9.3.1 General Virtual Impedance Model
9.3.2 LC-Trap Voltage Feedback
9.3.3 LC-Trap Current Feedback
9.4 Z-Domain Root-Locus Analysis
9.4.1 Z-Domain Transfer Functions
9.4.2 Root-Locus Analyses with Different Active Dampers
9.4.3 Comparison
9.5 Experimental Verification
9.6 Summary
References
Chapter 10 Enhancement of System Stability Using Active Cancelation to Eliminate the Effect of Grid Impedance on System Stability and Injected Power Quality of Grid-Connected Inverter
10.1 Introduction
10.2 Principle of the Grid Impedance Cancelator
10.3 Modeling with the Grid Impedance Cancelator
10.3.1 System Configuration with the Grid Impedance Cancelator
10.3.2 AC Voltage Regulation
10.3.3 Active Damping Function
10.3.4 DC Capacitor Voltage Control
10.4 Modeling of the Grid Impedance Cancelator
10.5 Experimental Verification
10.6 Summary
References
Index
EULA