Conversational AI for Natural Human-Centric Interaction: 12th International Workshop on Spoken Dialogue System Technology, IWSDS 2021, Singapore

دانلود کتاب Conversational AI for Natural Human-Centric Interaction: 12th International Workshop on Spoken Dialogue System Technology, IWSDS 2021, Singapore

54000 تومان موجود

کتاب هوش مصنوعی مکالمه ای برای تعامل طبیعی انسان محور: دوازدهمین کارگاه بین المللی فناوری سیستم گفت و گوی گفتاری، IWSDS 2021، سنگاپور نسخه زبان اصلی

دانلود کتاب هوش مصنوعی مکالمه ای برای تعامل طبیعی انسان محور: دوازدهمین کارگاه بین المللی فناوری سیستم گفت و گوی گفتاری، IWSDS 2021، سنگاپور بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 10


توضیحاتی در مورد کتاب Conversational AI for Natural Human-Centric Interaction: 12th International Workshop on Spoken Dialogue System Technology, IWSDS 2021, Singapore

نام کتاب : Conversational AI for Natural Human-Centric Interaction: 12th International Workshop on Spoken Dialogue System Technology, IWSDS 2021, Singapore
عنوان ترجمه شده به فارسی : هوش مصنوعی مکالمه ای برای تعامل طبیعی انسان محور: دوازدهمین کارگاه بین المللی فناوری سیستم گفت و گوی گفتاری، IWSDS 2021، سنگاپور
سری : Lecture Notes in Electrical Engineering, 943
نویسندگان : , ,
ناشر : Springer
سال نشر : 2022
تعداد صفحات : 302 [303]
ISBN (شابک) : 9811955379 , 9789811955372
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 6 Mb



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.

توضیحاتی در مورد کتاب :


این کتاب شامل مقالات بررسی شده از دوازدهمین کارگاه بین المللی فناوری سیستم گفتگوی گفتاری، IWSDS 2021، سنگاپور است. امروزه سیستم‌های گفتگو یا عوامل مکالمه به یکی از مهم‌ترین مکانیسم‌های تعامل انسان-رایانه یا انسان-ربات تبدیل شده‌اند که به طور گسترده به عنوان الگوی جدید برای بسیاری از برنامه‌ها، شرکت‌ها و کاربران نهایی پذیرفته شده است. از سوی دیگر، پیشرفت‌های اخیر در پردازش، درک و تولید زبان طبیعی، و همچنین افزایش مداوم قدرت محاسباتی و تعداد زیادی منابع و داده‌ها، پیشرفت‌های مهم و مداومی را در قابلیت‌های سیستم‌های گفتگو به ارمغان آورده است که کاربران را قادر می‌سازد بهره‌وری بیشتری داشته باشند. و تعاملات لذت بخش با این حال، در آستانه یک دهه جدید، وضعیت فعلی هنر زمینه‌های مهمی را نشان می‌دهد که در آن به پیشرفت‌هایی نیاز است، مانند ادغام دانش پایه، شخصیت، احساسات، و سازگاری، و همچنین مکانیسم‌های خودکار برای عینی، قوی و سریع. ارزیابی ها، به ویژه در زمینه توسعه برنامه های کاربردی اجتماعی و سلامت الکترونیکی. در این دوازدهمین ویرایش کارگاه بین‌المللی سیستم‌های گفت‌وگوی گفتاری (IWSDS)، «هوش مصنوعی مکالمه‌ای برای تعامل طبیعی انسان محور» خلاصه‌ای از تلاش‌های تحقیقاتی کنونی جهانی برای پیشبرد پیشرفت‌های فن‌آوری‌های گفت‌وگو را گردآوری و ارائه می‌کند. به مشکلات کلاسیک مدیریت گفتگو، تولید و درک زبان، شخصی‌سازی و تولید، تعامل گفتاری و چندوجهی، ارزیابی گفتگو، مدل‌سازی گفتگو و برنامه‌های کاربردی، و همچنین موضوعات مرتبط با ربات‌های گفتگو و فناوری‌های عامل مکالمه.

فهرست مطالب :


Organization Preface Contents *-1.5pc Natural Language Understanding Out-of-Scope Domain and Intent Classification through Hierarchical Joint Modeling 1 Introduction 2 Related Work 3 Hierarchical Joint Modeling 4 Experiments 4.1 Experimental Setup 4.2 Results and Discussion 5 Conclusion References Segmentation-Based Formulation of Slot Filling Task for Better Generative Modeling 1 Introduction 2 Related Work 3 Segmentation-Based Formulation of Slot Filling Task 3.1 Definition of Generative Models 3.2 Training of PYPSMs by Collapsed Gibbs Sampling 3.3 Finding the Most Likely Labeled Segmentation 4 Experiment 4.1 Datasets 4.2 Settings 4.3 Results 5 Conclusion References Can We Predict How Challenging Spoken Language Understanding Corpora Are Across Sources, Languages, and Domains? 1 Introduction 2 Predicting Corpus Complexity 3 Analyzing Complexity Factors 4 Experiments on Benchmark Corpora 5 Application to Deployed SLU System Data 6 Conclusion References *-1.5pc Personalisation and Generation Personalized Extractive Summarization with Discourse Structure Constraints Towards Efficient and Coherent Dialog-Based News Delivery 1 Introduction 2 Datasets 2.1 Discourse Structure Dataset 2.2 Interest Dataset 3 Methods 3.1 Inter-Sentence Dependency Parsing 3.2 Discourse Relation Classification and Chunk Detection 3.3 Interest Estimation 3.4 Interesting Document Selection 3.5 Interesting Sentence Extraction 4 Experiments 4.1 Discourse Analysis 4.2 Interest Estimation 4.3 Personalized Summarization 5 Conclusion References Empathetic Dialogue Generation with Pre-trained RoBERTa-GPT2 and External Knowledge 1 Introduction 2 Related Work 3 The Proposed Method 3.1 Commonsense Knowledge and Emotional Concepts Extractor: CKECE 3.2 Pre-trained RoBERTa-GPT2 Encoder-Decoder 4 Experimental Settings and Results Analysis 4.1 Dataset 4.2 Baselines 4.3 Training Details 4.4 Automatic Evaluation Results 4.5 Use Cases Study 5 Conclusion and Outlook References Towards Handling Unconstrained User Preferences in Dialogue 1 Introduction 2 Related Work 3 Data 3.1 Cambridge Restaurants Dataset 3.2 Unconstrained Queries 3.3 Query-Snippets Annotation 4 Method 4.1 Unsupervised Approach 4.2 Supervised Approach 5 Experiments and Results 5.1 Information Retrieval 5.2 Snippet Relevance Classification 5.3 Discussion 6 Conclusions References Jurassic is (Almost) All You Need: Few-Shot Meaning-to-Text Generation for Open-Domain Dialogue 1 Introduction 2 Datasets 3 Experimental Setup 4 Experimental Results 5 Conclusion References *-1.5pc Spoken and Multimodal Interaction Comparison of Automatic Speech Recognition Systems 1 Introduction 2 Related Works 3 EQClinic Dataset 3.1 Data Collection 3.2 Data Analysis 4 Results 5 Discussion 6 Conclusion References Multimodal Dialogue Response Timing Estimation Using Dialogue Context Encoder 1 Introduction 2 Related Studies 2.1 Features of Response Timing Estimation 2.2 Representation of Response Utterance 3 Multimodal Response Timing Network with Dialogue Context Encoder 3.1 Inference LSTM 3.2 Dialogue Context Encoder 4 Experimental Data 5 Experiments 5.1 Feature Extraction 5.2 Training Condition of Network 6 Experimental Results 7 Conclusion References Eliciting Cooperative Persuasive Dialogue by Multimodal Emotional Robot 1 Introduction 2 Dialogue Robot with Multimodal Emotional Expressions 2.1 System Overview 2.2 Dialogue Scenario 2.3 Response Selection 2.4 System's Emotional State 2.5 System Emotion Decision 2.6 Speech and Gesture Generation 3 Speech Corpus for Emotional Dialogue System 3.1 Response Variation Collection for Each Emotional State 3.2 Emotional Speech Recording 3.3 Emotional Robot Gesture 3.4 Emotion Expressiveness 4 Dialogue Experiment 4.1 Experimental Setup 4.2 Experimental Results on Emotion Effects 4.3 Experimental Results on Modality Effects 4.4 Dialogue Example 5 Conclusion References *-1.5pc Dialogue Evaluation Design Guidelines for Developing Systems for Dialogue System Competitions 1 Introduction 2 Dialogue System Competitions 2.1 DSLC2 Situation Track 2.2 DRC 3 Proposed Design Guidelines 3.1 Make the System Take Initiative 3.2 Prevent Dialogue Flows from Relying Too Much on User Utterances 3.3 Include in Utterances that the System Understands What the User Said 4 System Design and Results for DSLC2 Situation Track 4.1 Specific Designs 4.2 Results and Examples 5 System Design for DRC and Results 5.1 Specific Designs 5.2 Results of Pre-preliminary Contest and Examples 6 Discussion and Conclusion References Understanding How People Rate Their Conversations 1 Introduction 2 Related Work 3 Method 3.1 Personality Story 3.2 Implementing the Story in a Conversational Agent 4 Results 4.1 User Reactions to Personality Story 4.2 Ratings Through Lens of User Personality 5 Discussion References *-1.5pc Dialogue Modelling and Applications A WoZ Study for an Incremental Proficiency Scoring Interview Agent Eliciting Ratable Samples 1 Introduction 2 Related Work 3 Data Collection 3.1 Experimental Design 3.2 WoZ Interview System 3.3 Interview Data Collection and Human Assessment 4 Incremental Prediction Model 5 Results and Discussions 6 Conclusion References SUPPLE: A Dialogue Management Approach Based on Conversation Patterns 1 Introduction 2 Related Work 2.1 Dialogue Management 3 The SUPPLE Dialogue Approach 3.1 Conversational Patterns 3.2 Session History 3.3 Agenda and Conversation Management 3.4 Dialogue State Tracking 3.5 Dialogue Act Selection 3.6 Dialogue Systems 4 Discussion and Conclusion References Dialogue Management as Graph Transformations 1 Introduction 2 Related Work 3 Approach 3.1 Dialogue State 3.2 Graph Operations 4 Case Study 5 Conclusion References *-1.5pc Chatbots and Conversational Agent Technologies Data Collection for Detecting Unwillingness to Answer Questions in Dialogue 1 Introduction 2 Dialogue Data Collection 2.1 Selection of Topics 2.2 Procedure of Dialogue Data Collection 2.3 Implementation of Dialogue Data Collection 3 Collecting Ratings from External Annotators 3.1 Identifying the Span of Questions and Answers 3.2 Annotation of Ratings 4 Estimating Unwillingness to Answer Questions and Difficulty to Ask Questions 4.1 Procedure for Creating a Model 4.2 Results of Regression 5 Summary and Future Work References Enhancing Self-disclosure In Open-Domain Dialogue By Candidate Re-ranking 1 Introduction 2 Self-disclosure 2.1 Self-disclosure (SD) Level 2.2 Self-disclosure Recognition Model 3 Self-disclosure Enhancement By Candidate Re-ranking 4 Experiment 4.1 Data Configuration 4.2 Result and Error Analysis 5 Discussion, Limitation and Future Work 6 Conclusion References On the Impact of Self-efficacy on Assessment of User Experience in Customer Service Chatbot Conversations 1 Introduction 2 Related Work 3 Experimental Setup 4 Result 4.1 Reliability of UX Items 4.2 UX and Self-efficacy 5 Discussion and Conclusion References Learning to Ask Specific Questions Naturally in Chat-Oriented Dialogue Systems 1 Introduction 2 Related Work 3 Proposed Model 3.1 Creating Question-Guiding Corpus 3.2 Training Response Generation Model 4 Experiment 4.1 Question-Guiding Corpus 4.2 Training Response Generation Model 4.3 Comparison Models 4.4 Evaluation by Dialogue Simulation 4.5 Human Evaluation 5 Conclusion References Fine-Tuning a Pre-trained Transformer-Based Encoder-Decoder Model with User-Generated Question-Answer Pairs to Realize Character-Like Chatbots 1 Introduction 2 Data Collection 2.1 Role-Play-Based QA Corpus 2.2 Character-Dialogue Corpus 3 Response Generation Models 3.1 Retrieval-Based Model (Baseline) 3.2 Pre-trained Transformer-Based Encoder-Decoder Model 4 Experiments 4.1 Data and Model Preparation 4.2 Automatic Evaluations 4.3 Manual Evaluation (Utterance-Level) 4.4 Manual Evaluation (Dialogue-Level) 5 Analysis 6 Conclusion References Investigating the Impact of Pre-trained Language Models on Dialog Evaluation 1 Introduction 2 Pre-trained Language Models 2.1 Masked Language Modeling (MLM) 2.2 Replaced Token Detection (RTD) 2.3 Causal Language Modeling (CLM) 2.4 Permutation Language Modeling (PLM) 2.5 Sentence-Level Representation Learning 3 Automatic Dialog Evaluation Metrics 4 Experiment and Analysis 4.1 Dialog Evaluation Benchmarks 4.2 Initial Analysis 4.3 Rankings of Pre-trained Language Models 4.4 Fine-Grained Analysis on Evaluation Dimension 5 Conclusion and Future Work References

توضیحاتی در مورد کتاب به زبان اصلی :


This book includes peer-reviewed articles from the 12th International Workshop on Spoken Dialogue System Technology, IWSDS 2021, Singapore. Nowadays, dialogue systems or conversational agents have become one of the most important mechanisms for human-computer or human-robot interaction that has been widely adopted as new paradigm for many applications, companies, and final users. On the other hand, recent advances in natural language processing, understanding and generation, as well as a continuous increasing computational power and large number of resources and data, have brought important and consistent improvements to the capabilities of dialogue systems enabling users to have more productive and enjoyable interactions. However, on the threshold of a new decade, the current state of the art shows important areas where improvements are needed such as incorporation of ground-based knowledge, personality, emotions, and adaptability, as well as automatic mechanisms for objective, robust and fast evaluations, especially in the context of developing social and e-health applications. In this 12th edition of the International Workshop on Spoken Dialogue Systems (IWSDS), “Conversational AI for natural human-centric interaction“ compiles and presents a synopsis on current global research efforts to push forward the state of the art in dialogue technologies, including advances to the classical problems of dialogue management, language generation and understanding, personalisation and generation, spokena and multimodal interaction, dialogue evaluation, dialogue modelling and applications, as well as topics related to chatbots and conversational agent technologies.



پست ها تصادفی