توضیحاتی در مورد کتاب Cool thermodynamics : the engineering and physics of predictive, diagnostic and optimization methods for cooling systems
نام کتاب : Cool thermodynamics : the engineering and physics of predictive, diagnostic and optimization methods for cooling systems
عنوان ترجمه شده به فارسی : ترمودینامیک خنک: مهندسی و فیزیک روش های پیش بینی، تشخیص و بهینه سازی برای سیستم های خنک کننده
سری :
نویسندگان : Jeffrey M Gordon, Kim Choon Ng
ناشر : Cambridge International Science Pub
سال نشر : 2001
تعداد صفحات : 274
ISBN (شابک) : 1898326908 , 9781423721086
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 2 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Contents......Page 5
Preface......Page 10
NOMENCLATURE......Page 12
CONVERSION TABLE......Page 15
A. YOUR INTEREST IN COOLING SYSTEMS......Page 16
B. COOLING BASICS......Page 17
C. UNIVERSAL ASPECTS OF CHILLER BEHAVIOR......Page 21
D1. The issues addressed and the predictions validated......Page 23
D2. The readership: toward whom the book is geared......Page 24
E. THE READER’S BACKGROUND......Page 29
A. INTRODUCTION......Page 30
B1. Reversible Carnot refrigeration cycle......Page 31
B2. The discrepancy between physical idealizations and engineering realities......Page 34
B3. Real vapor-compression cycles......Page 41
B4. Reciprocating Chillers......Page 46
B5. Centrifugal chillers......Page 47
B6. Screw compressor chillers......Page 49
B7. Refrigerants......Page 51
C1. Absorption basics and absorption versus mechanical chillers......Page 52
C2. Working pairs (refrigerant solutions) and practical considerations......Page 55
C3. COP for absorption machines......Page 57
C5. Series versus parallel configurations......Page 59
C6. Derivation of fundamental bounds for absorption COP......Page 60
D. THERMOACOUSTIC CHILLER......Page 65
E. THERMOELECTRIC CHILLER......Page 66
B1. Wherefore standards?......Page 69
B3. What constitutes commercial standards?......Page 70
D. MEASUREMENT ACCURACY, INSTRUMENTATION AND EXPERIMENTAL UNCERTAINTY......Page 74
E. STANDARD FOR WATER-COOLED MECHANICAL CHILLERS......Page 80
F. ABSORPTION CHILLER STANDARD......Page 81
G1. Mechanical heat pumps......Page 83
H1. Why bother with alternative test rig designs?......Page 84
H4. Mixing process for a heat pump......Page 85
A. ENTROPY PRODUCTION......Page 88
B. EXAMPLE FOR MECHANICAL CHILLERS......Page 90
C. EXAMPLE FOR ABSORPTION CHILLERS......Page 91
D. PROCESS AVERAGE TEMPERATURE......Page 92
E1. The first two laws of thermodynamics and general modeling of irreversibilities......Page 99
E2. How COP is comprised of contributions from individual classes of irreversibility......Page 102
E3. A natural form for chiller characteristic plots......Page 105
F2. Derivation of the characteristic curve for chillers and heat pumps......Page 106
F3. Process average temperatures and general expressions for COP......Page 108
F4. Heat transformers......Page 110
G. VALIDITY OF THE CONSTANCY OF INTERNAL LOSSES......Page 111
H. PROCESS AVERAGE TEMPERATURE AND EXERGY ANALYSIS......Page 112
A. THE VALUE OF EXPRESSING CHILLER PERFORMANCE IN TERMS OF COOLANT TEMPERATURES......Page 113
B1. The full expression......Page 114
B2. The approximate formula......Page 118
B3. Qualifications about the regression fits......Page 119
C1. Absorption chillers and heat pumps......Page 120
C2. Absorption heat transformers......Page 121
C3. Absorption chiller performance curve......Page 122
A. AIMS OF THE CHAPTER......Page 124
B2. Theory versus experiment......Page 125
B3. A qualification: the importance of measurement accuracy......Page 130
C. WHERE ACTUAL CHILLER PERFORMANCE LIES ON THE CHARACTERISTIC CURVE......Page 132
D. CONSTRAINED CHILLER OPTIMIZATION FOR LIMITED HEAT EXCHANGER SIZE......Page 133
E. HIGHLY CONSTRAINED OPTIMAL DESIGNS: AIR-COOLED SPLIT RECIPROCATING CHILLERS......Page 135
A. GLOBAL OPTIMIZATION WITH RESPECT TO FINITE TIME AND FINITE THERMAL INVENTORY......Page 140
B. HOW FINITE TIME ENTERS GOVERNING PERFORMANCE EQUATIONS......Page 142
C. PERFORMING THE GLOBAL OPTIMIZATION......Page 144
D. COMPARISON WITH CHILLER EXPERIMENTAL DATA......Page 146
E. EQUIVALENCE OF MAXIMIZING COP AND MINIMIZING UNIVERSAL ENTROPY PRODUCTION......Page 149
F. CLOSURE......Page 150
A. BACKGROUND TO THE PROBLEM......Page 152
B. ADAPTING THE ANALYTIC CHILLER MODEL TO INCORPORATE COOLANT FLOW RATES......Page 155
C. EXPLICIT ACCOUNTING FOR THE INFLUENCE OF COOLANT FLOW RATE......Page 156
D. EXPERIMENTAL DETAILS......Page 158
E. APPLICATION OF THE MODEL AND EXPERIMENTAL CONFIRMATION......Page 160
F. CLOSURE......Page 162
A. OBJECTIVES AND MOTIVATION......Page 164
B3. Absorption chillers and heat pumps: diagnostics and design conclusions......Page 166
B4. HEAT TRANSFORMER ANALYSIS AND DIAGNOSTICS......Page 171
A. INTRODUCTION......Page 174
B2. Heat exchanger effects: expressing results in terms of coolant temperatures......Page 176
B3. Modeling internal losses and the final 3-parameter formula......Page 178
C1. Validating predicted functional dependences and accurate COP correlations......Page 180
C2. Limits to the model......Page 183
D1. Details of a diagnostic case study......Page 184
D2. Performance data, model predictions and the truth about part-load behavior......Page 187
D3. The diagnostic case study from the perspective of the fundamental chiller model......Page 190
E1. Basic thermodynamic behavior......Page 192
E2. Adapting the quasi-empirical model to absorption chillers......Page 193
E3. Comparing model predictions against experimental data......Page 195
E4. Case study on the effect of surfactant......Page 196
E5. The extended performance curve......Page 200
F2. Thermoacoustic chillers......Page 201
F3. Thermoelectric chillers......Page 202
F4. Unique thermodynamic aspects of thermoelectric chillers......Page 204
A. MISSING MOST OF THE PHYSICS AND ITS CONSEQUENCES......Page 205
B. PREDICTING COP AS A FUNCTION OF COOLING RATE......Page 207
C. ANALYSIS WITH DATA FROM RECIPROCATING CHILLERS......Page 208
D. ANALYSIS WITH DATA FROM ABSORPTION SYSTEMS......Page 209
E. ARE ENDOREVERSIBLE MODELS FOR HEAT ENGINES ANY BETTER?......Page 211
A. PEEKING INTO THE BLACKBOX......Page 213
B2. Experimental details and thermodynamic calculations......Page 215
B3. Observations about internal dissipation......Page 216
B4. Repercussions for diagnostics and optimization......Page 218
C1. The nature of the study Absorption chillers also operate......Page 219
C2. About regenerative absorption chillers......Page 220
C3. Experimental details......Page 222
C4. Calculation of the PATs and internal entropy production......Page 226
C6. Quantitative results for internal dissipation and the implications......Page 227
C7. Qualifications......Page 232
A. BACKGROUND......Page 234
B. PAT AND THE PERFORMANCE CHARACTERISTIC FOR MECHANICAL CHILLERS......Page 237
C. PAT–ENTROPY DIAGRAM FOR MECHANICAL CHILLERS......Page 238
D. PAT AND THERMODYNAMIC DIAGRAMS FOR ABSORPTION CHILLERS......Page 240
E. THE EXAMPLE OF THE THERMOELECTRIC CHILLER......Page 245
A. TYING UP LOOSE ENDS......Page 247
B. THE THERMOELECTRIC CHILLER AS A CLEAR CUT CASE......Page 248
C. SCREW-COMPRESSOR CHILLERS......Page 249
E. ADSORPTION CHILLERS......Page 252
F1. Device description and how vortex motion creates a cooling effect......Page 256
F2. Chiller performance characteristics......Page 257
F4. The external perspective of the chiller......Page 258
F5. The internal perspective of the chiller......Page 259
F6. Characteristic chiller plots and their interpretation......Page 261
REFERENCES......Page 262
Index......Page 269