توضیحاتی در مورد کتاب :
اطلاعات اعتباری و مدلسازی توضیحی ضروری از مدلها و روشهای آماری مورد استفاده در هنگام ارزیابی ریسک اعتباری و تصمیمگیری خودکار ارائه میدهد.
بیش از هشت ماژول، این کتاب وام دادن به مصرفکننده و کسبوکار را در جهان توسعهیافته و در حال توسعه پوشش میدهد و چارچوبهایی را برای تئوری و عمل فراهم میکند. ابتدا مقدمهای بر ارزیابی ریسک اعتباری و مدلسازی پیشبینیکننده، تاریخچههای خرد اعتبار و امتیازدهی اعتباری را بررسی میکند.
همچنین فرآیندهای مورد استفاده در چرخه مدیریت ریسک اعتباری. سپس ابزارهای ریاضی و آماری مورد استفاده برای توسعه و ارزیابی مدلهای پیشبینی، علاوه بر مدیریت پروژه و جمعآوری دادهها، آمادهسازی دادهها از نمونهگیری تا رد استنتاج و در نهایت مدلسازی در نظر گرفته میشوند.
آموزش تا اجرا
اگرچه تمرکز بر ریسک اعتباری است، به ویژه در بخش های مصرف کننده خرده فروشی و مشاغل کوچک، بسیاری از مفاهیم در بین رشته ها مشترک هستند، چه برای تحقیقات آکادمیک یا استفاده عملی. این کتاب دانش قبلی کمی دارد، بنابراین آن را به یک مرجع ضروری دسکتاپ برای دانش آموزان و دانشجویان تبدیل می کند
تمرینکنندگان به طور یکسان
اطلاعات اعتباری و مدلسازی موفقیت ابزار امتیازدهی اعتباری را گسترش میدهد تا آژانسهای رتبهبندی اعتباری و اطلاعاتی و دادهها و ابزارهای مورد استفاده به عنوان بخشی از فرآیند را پوشش دهد.
فهرست مطالب :
Cover
Credit Intelligence & Modelling: Many Paths through the Forest of Credit Rating and Scoring
Copyright
Dedication
Foreword
Shifting Seas
The Toolkit
Forest Paths
Acknowledgements
Language & Syntax
Presentation—Warnings
Kindle e-Book—Warnings
Table of Contents
Module A: Introduction
1: Credit Intelligence
1.1 Debt versus Credit
1.2 Intelligence!
1.2.1 Individual Intelligence
1.2.2 Collective Intelligence
1.2.3 Intelligence Agencies
1.2.4 Intelligence Cycle
1.3 The Risk Lexicon
1.3.1 What is . . .?
1.3.1.1 Credit Intelligence
1.3.1.2 Credit risk
1.3.2 The Risk Universe
1.3.2.1 Business Risk
1.3.2.2 Risk by Nature
1.3.2.3 Rumsfeld Matrix
1.3.2.4 Black Swans and Other Strange Creatures
1.3.3 Measure
1.3.3.1 Assess, Measure, Communicate
1.3.3.2 Time Horizons
1.3.3.3 Desired Rating Properties
1.3.4 Beware of Fallacies
1.3.4.1 Argument
1.3.4.2 Evidence
1.3.4.3 Appeals
1.4 The Moneylender
1.4.1 Credit’s 5 Cs
1.4.2 Borrowings and Structure
1.4.3 Engagement
1.4.3.1 Relationship Lending
1.4.3.2 Transactional
1.4.3.3 Providers—Benefits or Not
1.4.3.4 Customers—Benefits or Not
1.4.4 Retail versus Wholesale
1.4.4.1 Wholesale
1.4.4.2 Retail
1.4.4.3 Grade Presentation
1.4.4.4 From Rules and Judgment to Models
1.4.4.5 Empirical Ratings
1.4.5 Risk-Based Pricing (RBP)
1.5 Summary
2: Predictive Modelling Overview
2.1 Models
2.1.1 Model Types and Uses
2.1.2 Choices and Elements
2.1.2.1 Functional Form
2.1.2.2 Methodology
2.1.2.3 Parameter Estimation
2.1.3 Model Lifecycle
2.2 Model Risk (MR)
2.2.1 Categories
2.2.2 Management
2.2.3 Models on Models
2.3 Shock Events
2.3.1 Past Events
2.3.2 COVID-19 Views
2.4 Data
2.4.1 Desired Qualities
2.4.2 Sources
2.4.2.1 Homophily
2.4.3 Types
2.4.3.1 Honouring Obligations
2.4.3.2 Transactions
2.4.3.3 Non-Financial Behaviour
2.4.3.4 Disclosed
2.4.3.5 Investigation
2.4.3.6 Providing Comfort
2.5 Summary
3: Retail Credit
3.1 Scorecard Terminology
3.1.1 Targeting Rare Events
3.1.2 Functional Forms
3.2 Retail Model Types
3.2.1 When?—Credit Risk Management Cycle
3.2.2 What?—The Four Rs of Customer Measurement
3.2.3 Who?—Experience, To Borrow or Not To Borrow
3.2.4 How?—Empirical versus Judgment
3.2.5 The Commonest Types
3.3 Data Sources
3.3.1 Credit Bureaux
3.3.2 Ownership Types
3.3.3 Credit Registries
3.4 Risk ‘Indicators’
3.4.1 Types of Risk Indicators
3.4.2 Banding Presentation
3.5 FICO Scores
3.5.1 Scaling Parameters
3.6 Summary
4: Business Credit
4.1 Risk 101
4.1.1 Credit Risk Analysis
4.1.2 Data Sources
4.1.3 Risk Assessment Tools
4.1.4 Rating Grades
4.1.4.1 External Grades
4.1.4.2 Standard & Poor’s (S&P)
4.1.4.3 Internal Grades
4.1.4.4 Master Rating Scales
4.1.5 SME (Small and Medium Enterprises) Lending
4.2 Financial Ratio Scoring
4.2.1 Pioneers
4.2.2 Predictive Ratios
4.2.3 Agency Usage
4.2.4 Moody’s RiskCalcTM
4.2.5 Non-Financial Factors
4.3 Use of Forward-Looking Data
4.3.1 Historical Analysis
4.3.2 Structural Models
4.3.3 Reduced-Form Models
4.3.3.1 Credit Spreads
4.4 Summary
Module B: The Histories
5: Side Histories
5.1 The Industrial Revolutions
5.1.1 Authors and Players
5.1.2 Further Details
5.1.3 Implications
5.2 Booms and Busts; Bubbles and Bursts
5.2.1 17th Century
5.2.2 18th Century
5.2.3 19th Century
5.2.3.1
5.2.3.2 (1857–59) Panic of 1857
5.2.4 (1873–96) The Long Depression
5.2.5 20th Century
5.2.6 21st Century
5.3 Registration
5.3.1 Social Relationships
5.3.1.1 Hierarchies
5.3.1.2 Obligations
5.3.2 In History
5.3.2.1 Ancient China
5.3.2.2 Ancient Rome
5.3.2.3. Early-Modern Europe
5.3.3 Evidence
5.3.3.1 Passports
5.3.3.2 References
5.3.3.3 Certificates
5.3.3.4 Tokens
5.4 Identification
5.4.1 Visual
5.4.1.1 Traces
5.4.1.2 Worn and Borne
5.4.1.3 Mannerisms
5.4.2 Oral
5.4.2.1 Voice
5.4.2.2 Language and Accent
5.4.2.3 Unique Knowledge
5.4.3 Disclosed
5.4.3.1 Names
5.4.3.2 Numbers
5.4.4 Authenticators
5.4.5 Invasive
5.5 Summary
6: Credit—A Microhistory
6.1 The Ancient World
6.1.1 Mesopotamia
6.1.2 Greece
6.1.3 Roman Empire
6.2 The Mediaeval World
6.2.1 Early Middle Ages
6.2.2 Churches and Holy Men
6.2.3 Pawnbroking
6.2.4 Vifgage and Morgage
6.2.5 Merchant Banking
6.2.6 Bankruptcy Legislation—16th through 18th Centuries
6.3 Credit Evolution
6.3.1 Trade Finance and Investment
6.3.2 Personal Credit—Pre-1880
6.3.3 Personal Credit—1880s Onwards
6.3.4 Instalment Credit
6.4 Credit Vendors
6.4.1 Tallymen, Credit Drapers and Travelling Salesmen
6.4.2 Department Stores
6.4.3 Mail Order
6.4.4 Mobile Network Operators (MNO)s
6.4.5 Internet Service Providers
6.5 Credit Media and Assets Financed
6.5.1 Promissory Note and Bill of Exchange
6.5.2 Cheques and Overdrafts
6.5.2.1 Cheques
6.5.2.2 Overdrafts
6.5.3 Charge and Credit Cards
6.5.4 Car Loans and Consumer Durables
6.5.5 Home Loans
6.5.6 Student Loans
6.6 Summary and Reflections
Questions—History of Credit
7: The Birth of Modern Credit Intelligence
7.1 Pre-Revolution
7.2 United Kingdom
7.3 United States
7.3.1 Early America
7.3.1.1 Mercantile Reporting Agencies
7.3.1.2 The Tappans
7.3.1.3 Mercantile to 1859
7.3.1.4 Dun versus Bradstreet to 1933
7.3.1.5 19th-Century Operations
7.3.1.6 Publishing and Rating
7.3.1.7 Dun & Bradstreet
7.3.2 Credit Men and Information Exchanges
7.3.3 Credit Bureaux
7.4 The ‘Big Three’ Credit Bureaux, Plus Some
7.4.1 Equifax
7.4.2 Experian
7.4.2.1 Commercial Credit Nottingham (UK)
7.4.2.2 Thompson Ramo Wooldridge (USA)
7.4.2.3 Experian
7.4.3 TransUnion
7.4.4 Centrale Rischi Finanziari (CRIF)
7.4.5 CreditInfo
7.4.6 Others
7.4.7 Current Spread
7.4.8 Economics and Statistics
7.5 Rating Agencies
7.6 High-Level Observations
7.7 Summary and Reflections
Questions—History of Credit Intelligence
8: The Dawn of Credit Scoring
8.1 Before Statistics
8.2 Statistical Experiments: 1941–1958
8.3 Rise of the Scorecard Vendor
8.3.1 Fair, Isaac & Co. (FICO)
8.3.2 VantageScore Solutions
8.3.3 Management Decision Systems (MDS)
8.3.4 Scorelink and Scorex
8.4 Rise of the Corporate Modeller
8.4.1 JP Morgan
8.4.2 Kealhofer McQuown Vašícek (KMV)
8.4.3 Moody’s Analytics
8.5 Regulation
8.5.1 Privacy—Fair Credit Reporting Act (FCRA) (1970)
8.5.2 Privacy—OECD and European Legislation
8.5.3 Anti-Discrimination Equal Credit Opportunity Act
8.5.4 Capital Requirements—Basel II, III, IV
8.5.5 Accounting—International Financial Reporting Standards (IFRS)
8.6 Borrowed Concepts
8.7 Statistical Methods
8.7.1 Linear Programming (FICO)
8.7.2 Discriminant Analysis
8.7.3 Linear Probability Modelling (LPM)
8.7.4 Logistic Regression (Independents and Others)
8.7.5 Neural Networks
8.7.6 Other Non-Parametric Techniques
8.8 Summary and Reflections
Questions—History of Credit Scoring
Module C: Credit Lifecycle
Shared Service Centres (SSCs)
9: Front-Door
9.1 Marketing
9.1.1 Advertising
9.1.2 Two Tribes
9.1.3 Pre-Screening
9.1.4 Data
9.1.5 Summary
Questions—Marketing
9.2 Origination
9.2.1 Gather—Interested Customer Details
9.2.1.1 Acquire Applicant Details
9.2.1.2 Paper-based capture
9.2.1.3 Pre-scoring screening and sanitation
9.2.2 Sort—Into Strategy Buckets
9.2.2.1 Enquire—Internal
9.2.2.2 Enquire—External
9.2.2.3 Measure and Decide
9.2.3 Action—Accept or Reject
9.2.3.1 Declines
9.2.3.2 Accepts
9.2.4 Summary
Questions—Originations
9.3 Account Management
9.3.1 Types of Limits
9.3.1.1 Use of Other Scores
9.3.1.2 Triage
9.3.2 Over-Limit Management (Takers)
9.3.2.1 Cheque Accounts—Pay/No Pay
9.3.2.2 Credit Cards—Authorizations
9.2.3.3 Informed Customer Effect
9.3.3 More Limit and Other Functions
9.3.3.1 Limit-Increase Requests (Askers)
9.3.3.2 Limit-Increase Campaigns (Givers)
9.3.3.3 Limit Reviews (Repeaters)
9.3.3.4 Cross-Sales (Repayers/Repeaters/Leavers)
9.3.3.5 Win-Back (Leavers)
9.3.4 Summary
Questions—Account Management
10: Back-Door
10.1 Collections and Recoveries (C&R)
10.1.1 Overview
10.1.1.1 Delinquency Reasons
10.1.1.2 Excuses
10.1.2 Process
10.1.2.1 Core Systems Requirements
10.1.2.2 Agencies
10.1.2.3 Reporting
10.1.3 Triggers and Strategies
10.1.3.1 Strategy Setting
10.1.3.2 Practical Considerations
10.1.4 Modelling
10.1.4.1 Collections and Recoveries (C&R) versus Behavioural
10.1.4.2 Collections Scorecard Classifications
10.1.4.3 Champion/Challenger
10.1.5 Summary
Questions—Collections
10.2 Fraud
10.2.1 Credit Card Fraud Trends
10.2.2 Definitions
10.2.2.1 Relationship to Account
10.2.2.1.1 Kite Flying
10.2.2.2 Misrepresentation
10.2.2.2.1 Embellishment/Massaging
10.2.2.2.2 Social Engineering
10.2.2.2.3 Identity Theft and Synthetic Identities
10.2.2.2.4 Property Hijacking
10.2.2.2.5 Advanced Persistent Threat
10.2.2.3 Authorization
10.2.2.3.1 Unauthorized Fraud
10.2.2.3.2 Authorized Fraud
10.2.3 Prevention Measures
10.2.3.1 Manual/Physical Measures
10.2.3.2 Online/Telephonic Measures
10.2.3.2.1 Knowledge
10.2.3.2.2 Visual Biometrics
10.2.3.2.3 Other Biometrics
10.2.3.2.4 Tokens
10.2.3.2.5 Multi-Factor
10.2.4 Data and Tools
10.2.5 Summary
Questions—Fraud
Module D: Toolbox
11: Stats & Maths & Unicorns
11.1 Variance and Correlations
11.1.1 Variance
11.1.2 Pairwise Correlations
11.1.2.1 Causation versus Coincidence
11.1.2.2 Why are Correlations an Issue?
11.1.2.3 Measures and Thresholds
11.1.2.4 Variable Types
11.1.3 Pearson’s Product-Moment
11.1.4 Spearman’s Rank-Order
11.1.5 Mahalanobis Distance
11.1.6 Variance Inflation Factor (VIF)
11.1.6.1 Greek, Damn Greek and Statistics
11.2.1 Coefficient of Determination (R-squared
11.2 Goodness-of Fit Tests
11.2.1 Coefficient of Determination (R-squared)
11.2.2 Pearson’s Chi-Square
11.2.3 Hosmer–Lemeshow Statistic
11.3 Likelihood
11.3.1 Log-Likelihood
11.3.2 Deviance
11.3.3 Akaike Information Criterion (AIC)
11.3.4 Bayesian Information Criterion (BIC)
11.4 Holy Trinity
11.4.1 Likelihood Ratio
11.4.1.1 Wilks’ Theorem
11.4.2 Wald Chi-Square
11.4.3 Rao’s Score Chi-Square
11.5 Summary
Questions—Stats & Maths & Unicorns
12: Borrowed Measures
12.1 Mathematics and Probability Theory
12.1.1 Logarithms
12.1.1.1 Archimedes
12.1.1.2 Napier, Briggs and Bürgi
12.1.1.3 Bernoulli and Euler
12.1.2 Laws of Large Numbers
12.1.3 Bayes’ Theorem
12.1.4 Laplace—Expected Values
12.1.5 Kolmogorov–Smirnov—Curve and Statistic
12.1.6 Gradient Descent
12.2 Probability Distributions and Hypotheses
12.2.1 Binomial Distribution
12.2.2 Normal Distribution and Z-Scores
12.2.3 Student’s t-Distribution
12.2.4 Verhulst’s Logistic Curve
12.2.5 Pearson’s Chi-Square Distribution
12.3 Economics
12.3.1 Lorenz Curve
12.3.2 Gini Coefficient
12.3.3 Gini Impurity Index
12.4 Information Theory and Cryptography
12.4.1 Shannon’s Entropy
12.4.2 Gudak—Weight of Evidence (WoE)
12.4.3 Kullback—Divergence Statistic
12.5 Signal-Detection Theory
12.5.1 Confusion Matrices
12.5.2 Receiver Operating Characteristic (ROC)
12.5.3 Area under the ROC (AUROC or AUC)
12.6 Forecasting
12.6.1 Markov Chains
12.6.2 Survival Analysis
12.7 Summary
Questions—Borrowed Measures
13: Practical Application
13.1 Characteristic Transformations
13.1.1 Rescale
13.1.2 Discretize
13.1.2.1 Dummy Variables
13.1.2.2 Piecewise
13.1.2.3 Weight of Evidence (WoE)
13.2 Characteristic Assessments
13.2.1 Information Value (IV)
13.2.2 Population Stability Index (PSI)
13.2.3 Chi-Square (.2)
13.3 Model Assessments
13.3.1 Lorenz and Gini
13.3.2 Cumulative Accuracy Profile, Accuracy Ratio and Lift
13.3.3 Divergence Statistic
13.4 Odds and Sods
13.4.1 Deviance Odds
13.4.2 Calinski–Harabasz Statistic
13.4.3 Gini Variance
13.5 Summary
Questions—Power, Separation and Accuracy
14: Predictive Modelling Techniques
14.1 A View from on High!
14.1.1 Caveats
14.1.2 Learning the Language
14.2 Parametric
14.2.1 Linear Regression
14.2.2 Discriminant Analysis
14.2.3 Linear Probability Modelling (LPM)
14.2.4 Probability Unit (Probit)
14.2.5 Logistic Regression (Logit)
14.2.6 Linear Programming
14.2.6.1 LP for Classification
14.3 Non-Parametric
14.3.1 K-Nearest Neighbours
14.3.2 Decision Trees
14.3.2.1 Bootstrap Aggregation and Random Forests (RF)s
14.3.3 Support Vector Machines (SVM)
14.3.4 Artificial Neural Networks
14.3.5 Genetic Algorithms
14.4 Conglomerations
14.4.1 Multiple Models
14.4.1.1 Practical
14.14.1.2 Parallel
14.4.1.3 Sequential
14.4.2 Machine Learning
14.5 Making the Choice
14.6 Summary
QUESTIONS—Predictive Modelling Techniques
Module E: Organizing
15: Project Management
15.1 Development Process Overview
15.1.1 Initiation
15.1.2 Preparation
15.1.3 Construction
15.1.4 Finalization
15.2 Initiation and ‘Project Charter’
15.2.1 High-Level
15.2.1.1 Model register
15.2.2 Making the Case
15.2.2.1 Business Case
15.2.2.2 Scope
15.2.2.3 Assessment Criteria
15.2.3 Stakeholders and Players
15.2.3.1 Sponsor and Steering Committee
15.2.3.2 Project Manager (PM)
15.2.3.3 Team Lead (TL)
15.2.3.4 Team Members
15.2.4 Resources and Timetables
15.2.4.1 Resources
15.2.4.2 Project Timetable
15.2.5 Assumptions, Risks and Constraints
15.2.5.1 Target Specification
15.2.5.2 Model Form
15.2.5.3 Data Sources
15.2.5.4 Environmental Instability
15.3 Project Deliverables
15.3.1 Communication and Documentation
15.3.2 Model Development Documentation (MDD)
15.3.3 Implementation Instructions (MIID)
15.3.4 Project Code
15.3.5 Data
15.4 Other Considerations
15.4.1 Scorecard Development Software
15.4.1.1 Statistical Analysis System (SAS)
15.4.1.2 World Programming System (WPS) Analytics
15.4.1.3 Statistical Package for the Social Sciences (SPSS)
15.4.1.4 R
15.4.1.5 Python
15.4.1.6 Other Proprietary Tools
15.4.2 Implementation
15.4.2.1 Decision-Making Stages
15.4.2.2 Technology Options
15.4.2.3 Vendors
15.4.3 Next Steps
15.5 Summary
16: Data Acquisition—Observation
16.1 Make a Plan!
16.2 Gather
16.2.1 Key Fields
16.2.2 Matching Keys
16.2.3 Data Aggregation
16.2.4 Retention Rules
16.2.4.1 Retrospective Histories
16.3 Reduce
16.3.1 Characteristic Review
16.3.2 Proscribed Characteristics
16.3.3 Unand Under-Populated Characteristics
16.3.4 Correlated Characteristics
16.4 Cleanse
16.4.1 Out-of Scope
16.4.2 Underpopulated
16.4.3 Duplicates
16.4.4 Outliers
16.4.5 Inconsistencies
16.5 Check
16.6 Summary
17: Data Acquisition—Performance
17.1 Planning Extraction
17.1.1 Minimum Requirements
17.1.2 Casting the Net
17.1.3 Basic Checks
17.2 File Preparation and Review
17.2.1 Deep Dives of Simple Sorts
17.2.2 Performance Arrays
17.2.3 Payment Profile Strings
17.2.4 Performance Maintenance
17.3 Window Setting
17.3.1 Length
17.3.2 End-of-versus Worst-of-Window
17.3.3 Fixed vs Variable
17.4 Summary
18: Target Definition
18.1 Overview
18.1.1 Binaries
18.1.2 Requirements
18.1.3 Performance Components
18.1.4 Code Crosschecks
18.2 Definition Strictness
18.2.1 Status nodes
18.2.2 Level of Delinquency
18.2.2.1 Time 0 vs Time 1
18.2.2.2 Time 1 vs Time 2
18.2.3 Trivial Balances
18.2.4 Closed Accounts
18.3 Integrity Checks
18.3.1 Consistency Check
18.3.2 Characteristic Check
18.3.3 Swap-Set Check
18.4 Summary
19: File Assembly
19.1 Merge Observation and Performance
19.1.1 Finding Performance
19.1.2 Outcome Field Merge
19.1.3 Kill and Other Rules
19.1.4 Not Taken Up (NTU), Uncashed
19.2 External Data Acquisition
19.2.1 Retro History Requests
19.2.2 Data Security
19.3 Further Reduction
19.3.1 Pre-Processing
19.3.2 Correlated Characteristics
19.3.2.1 Weak Characteristics
19.4 Summary
Module F: Packing
20: Sample Selection
20.1 Overview
20.1.1 Terminology
20.1.2 Optimal and Minimum Sample Sizes
20.1.3 Law of Diminishing Data Returns
20.2 Training, Holdout, Out-of Time Recent (THOR) Samples
20.2.1 Sample Types
20.2.2 Sampling Guidelines
20.2.2.1 Training
20.2.2.2 Hold-out
20.2.2.3 Out-of Time
20.2.2.4 Recent
20.2.3 Observation Windows
20.2.4 Sampling Plan and Outcome
20.3 Afterthoughts
20.3.1 Unand Under-Populated Characteristics
20.3.2 Exact Random Sample
20.3.3 Housekeeping
20.4 Summary
21: Data Transformation
21.1 Traditional Transformations
21.1.1 Dummy Variables
21.1.2 Weight of Evidence
21.1.3 Piecewise
21.2 Classing/Binning
21.2.1 Characteristic Analysis Reports
21.2.2 Bulk Classing
21.2.3 Fine Classing
21.2.4 Coarse Classing
21.2.4.1 Class Sizes
21.2.4.2 Monotonicity
21.2.4.3 Automation
21.2.4.4 Training versus Hold-Out and Out-of Time
21.2.4.5 Known versus Inferred
21.2.4.6 Final Checks
21.2.5 Piecewise Classing
21.2.6 Final Transformation
21.3 Missing Data Treatment
21.3.1 Traditional
21.3.2 Missing Singles
21.3.3 Missing Multiples
21.4 Summary
Questions—Data Transformation
22: Segmentation
22.1 Overview
22.1.1 Drivers
22.1.1.1 Common Splits
22.1.2 Inhibitors
22.1.3 Mitigators
22.2 Analysis
22.2.1 Learning Types
22.2.2 Finding Interactions
Open versus closed form
Open form for binaries
Closed form for binaries
22.2.3 Segment Mining
22.2.4 Boundary Analysis
22.2.4.1 Boundary Types
22.2.4.2 An Example
22.3 Presentation
22.4 Summary
Questions—Segmentation
23: Reject-Inference
23.1 The Basics
23.1.1 Pointers
23.1.2 Missing at Random, or Not
23.1.3 Terminology
23.1.4 Characteristic Analysis
23.1.5 Swap-SetAnalysis
23.1.5.1 Score Level
23.1.5.2 Characteristic Level
23.1.6 Population-FlowDiagram
23.2 Intermediate Models
23.2.1 Accept/Reject
23.2.2 Taken Up/Not Taken Up (TU/NTU)
23.2.3 Known Good/Bad
23.2.4 Bringing it All Together
23.3 The Inference Smorgasbord
23.3.1 Supplementation
23.3.2 Performance Surrogates
23.3.2.1 It’s a Bird, it’s a Plane; no, it’s . . . Super Model!
23.3.3 Reject Equals Bad
23.3.4 Augmentation
23.3.5 Weight of Evidence (WoE) Adjustments
23.3.6 Iterative Reclassification
23.3.7 Extrapolation
23.4 Favoured Technique
23.4.1 Fuzzy-Parcelling
23.4.2 Extrapolation
23.4.2.1 Raw Inference
23.4.2.2 Extra Prejudice
23.4.3 Attribute-Level Adjustments
23.5 Let’s Get Practical!
23.5.1 Variable Names and Codes
23.5.2 Record-Level Inference Example
23.6 Summary
Questions—Reject-Inference
Module G: Making the Trip
24: Model Training
24.1 Regression
24.1.1 Options and Settings
24.1.2 Regression Outputs
24.2 Variable Selection
24.2.1 Criteria
24.2.2 Automated Variable Selection (AVS)
24.2.3 Stepwise Output Review
24.2.3.1 Stepping Summary
24.2.3.2 Model Coefficients
24.2.4 Constraining the Beta Beast
24.2.4.1 Negative Coefficients—Beta < 0
24.2.4.2 Overprediction—Beta > 1
24.2.5 Stepping by Gini
24.3 Correlation and Multi-Collinearity
24.3.1 Multi-Collinearity
24.3.2 Pairwise Correlations
24.4 Blockwise Variable Selection
24.4.1 Variable Reduction Blocks
24.4.2 Staged Blocks (Residual Prediction)
24.4.3 Embedded Blocks
24.4.4 Ensemble Blocks
24.5 Multi-ModelComparisons
24.5.1 Lorenz Curve Comparisons
24.5.2 Strategy Curve Comparisons
24.6 Model Calibration
24.6.1 Simple Calibration
24.6.2 Piecewise Calibration
24.6.3 Score and Points CalibrationThe previous section assumes we are adjusting predictions provided
24.6.4 MAPA Calibration
24.7 Summary
Questions—Model Training
25: Scaling and Banding
25.1 Scorecard Scaling
25.1.1 Background
25.1.2 Percentages
25.1.3 Fixed Ranges
25.1.4 Scaling Parameters
25.1.4.1 Basic Formulae
25.1.4.2 Intercepts and Coefficients → Scorecard Points
25.1.4.3 Log-Odds↔ Probability ↔ Score
25.1.5 Other Considerations
25.1.5.1 Scorecard Presentation
25.1.5.2 Adverse Reason Codes
25.2 Risk Banding
25.2.1 Zero Constraints
25.2.2 Fitted Distributions
25.2.3 Benchmarked
25.2.4 Fixed-BandBoundaries
25.3 Summary
Questions—Scaling and Banding
26: Finalization
26.1 Validation
26.1.1 High Level
26.1.2 Independent Oversight
26.1.3 Quantitative Assessment
26.1.4 Assessing Misalignment
26.1.4.1 Score Misalignments
26.1.4.2 Characteristic Misalignment
26.2 Documentation
26.2.1 Possible Outline
26.2.2 Supplementary Tables and Graphics
26.2.2.1 Model Development
26.2.2.2 Period-On-Period—Pre- and Post-implementation
26.2.3 Selection Strategies
26.2.3.1 Failure versus Rejection—That is the Question!
26.2.3.2 Preparing for Post-implementation
26.2.4 Comparing New Against Old
26.2.4.1 Rating Transition Matrix
26.2.4.2 Swap Sets
26.3 Implementation
26.3.1 Platform Choice
26.3.1.1 Criticality
26.3.1.2 Budget
26.3.2 Testing
26.3.3 Further Considerations
26.4 Monitoring
26.4.1 Front-End
26.4.1.1 Overrides
26.4.2 Back-End
26.4.2.1 Vintage/Cohort Analysis
26.4.2.2 Early Monitoring
26.5 Summary
Questions—Finalization
Afterword
Areas for Further Research
Societal and Histories
Empirical
Module Z: Appendices
Glossary
Bibliography
Index
توضیحاتی در مورد کتاب به زبان اصلی :
Credit Intelligence and Modelling provides an indispensable explanation of the statistical models and methods used when assessing credit risk and automating decisions.
Over eight modules, the book covers consumer and business lending in both the developed and developing worlds, providing the frameworks for both theory and practice. It first explores an introduction to credit risk assessment and predictive modelling, micro-histories of credit and credit scoring, as
well as the processes used throughout the credit risk management cycle. Mathematical and statistical tools used to develop and assess predictive models are then considered, in addition to project management and data assembly, data preparation from sampling to reject inference, and finally model
training through to implementation.
Although the focus is credit risk, especially in the retail consumer and small-business segments, many concepts are common across disciplines, whether for academic research or practical use. The book assumes little prior knowledge, thus making it an indispensable desktop reference for students and
practitioners alike.
Credit Intelligence and Modelling expands on the success of The Credit Scoring Toolkit to cover credit rating and intelligence agencies, and the data and tools used as part of the process.